From f440edda982fb47ae4ca7df5ad13243d6203f659 Mon Sep 17 00:00:00 2001 From: Audric Schiltknecht Date: Thu, 8 May 2014 18:53:25 +0200 Subject: Essaie reécriture du site avec pelican MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Suppression des anciens fichiers. Création architecture site pelican. Récupération des contenus statiques. --- content/static/CV/CV_1P.pdf | Bin 0 -> 389707 bytes content/static/CV/CV_2P.pdf | Bin 0 -> 583850 bytes content/static/Projets/1A/Allumettes.jar | Bin 0 -> 12608 bytes content/static/Projets/1A/Particules.tar.gz | Bin 0 -> 18759 bytes content/static/Projets/1A/Rapport-Enigma.pdf | Bin 0 -> 76405 bytes content/static/Projets/1A/Rapport-Huffman.pdf | Bin 0 -> 221960 bytes content/static/Projets/1A/Rapport-Particules.pdf | Bin 0 -> 343835 bytes content/static/Projets/1A/Rapport-UML.pdf | Bin 0 -> 1083667 bytes content/static/Projets/1A/UML.jar | Bin 0 -> 331387 bytes content/static/Projets/2A/Intergiciel.jar | Bin 0 -> 463333 bytes content/static/Projets/2A/MJC.tar.gz | Bin 0 -> 38405 bytes content/static/Projets/2A/Rapport-Intergiciel.pdf | Bin 0 -> 292083 bytes content/static/Projets/2A/Rapport-eBide.pdf | Bin 0 -> 336012 bytes content/static/Projets/2A/Rapport-uJava.pdf | Bin 0 -> 195494 bytes content/static/Projets/2A/Slides-eBide.pdf | Bin 0 -> 223384 bytes content/static/Projets/2A/VHDL.tar.bz2 | Bin 0 -> 6260 bytes content/static/Projets/2A/eBide.tar.gz | Bin 0 -> 3430814 bytes content/static/Projets/UdeM/Rapport-ShadowMap.pdf | Bin 0 -> 749583 bytes content/static/Projets/UdeM/ShadowMap.tar.gz | Bin 0 -> 2211840 bytes content/static/Projets/UdeM/Slides-kdtree.pdf | Bin 0 -> 6065752 bytes content/static/Projets/UdeM/paper107.pdf | Bin 0 -> 1438879 bytes content/static/TIPE_2007/C/Sauv/TFD - C.tar.bz2 | Bin 0 -> 6512 bytes content/static/TIPE_2007/C/Sauv/TFD - C.zip | Bin 0 -> 10576 bytes content/static/TIPE_2007/C/TFD - C.tar.bz2 | Bin 0 -> 6447 bytes content/static/TIPE_2007/C/TFD - C.zip | Bin 0 -> 10496 bytes .../TIPE_2007/Dossier/Dossier_TIPE_2007_TF.pdf | Bin 0 -> 6737806 bytes .../Dossier/Dossier_TIPE_2007_TF.pdf.sansTOC | Bin 0 -> 6725908 bytes .../Dossier/Transparents_TIPE_2007_TF.pdf | Bin 0 -> 98762 bytes content/static/TIPE_2007/Maple/TFD - Old.mw | 496 +++++++++++++++++++++ content/static/TIPE_2007/Maple/TFD.mw | 472 ++++++++++++++++++++ content/static/TIPE_2007/Octave/Multiplication.m | 22 + .../static/TIPE_2007/Octave/TFD - Octave.tar.bz2 | Bin 0 -> 1000 bytes content/static/TIPE_2007/Octave/TFD - Octave.zip | Bin 0 -> 1321 bytes .../static/TIPE_2007/Octave/TFDI - Octave.tar.bz2 | Bin 0 -> 1046 bytes content/static/TIPE_2007/Octave/TFDI - Octave.zip | Bin 0 -> 1380 bytes 35 files changed, 990 insertions(+) create mode 100644 content/static/CV/CV_1P.pdf create mode 100644 content/static/CV/CV_2P.pdf create mode 100644 content/static/Projets/1A/Allumettes.jar create mode 100644 content/static/Projets/1A/Particules.tar.gz create mode 100644 content/static/Projets/1A/Rapport-Enigma.pdf create mode 100644 content/static/Projets/1A/Rapport-Huffman.pdf create mode 100644 content/static/Projets/1A/Rapport-Particules.pdf create mode 100644 content/static/Projets/1A/Rapport-UML.pdf create mode 100644 content/static/Projets/1A/UML.jar create mode 100644 content/static/Projets/2A/Intergiciel.jar create mode 100644 content/static/Projets/2A/MJC.tar.gz create mode 100644 content/static/Projets/2A/Rapport-Intergiciel.pdf create mode 100644 content/static/Projets/2A/Rapport-eBide.pdf create mode 100644 content/static/Projets/2A/Rapport-uJava.pdf create mode 100644 content/static/Projets/2A/Slides-eBide.pdf create mode 100644 content/static/Projets/2A/VHDL.tar.bz2 create mode 100644 content/static/Projets/2A/eBide.tar.gz create mode 100644 content/static/Projets/UdeM/Rapport-ShadowMap.pdf create mode 100644 content/static/Projets/UdeM/ShadowMap.tar.gz create mode 100644 content/static/Projets/UdeM/Slides-kdtree.pdf create mode 100644 content/static/Projets/UdeM/paper107.pdf create mode 100644 content/static/TIPE_2007/C/Sauv/TFD - C.tar.bz2 create mode 100644 content/static/TIPE_2007/C/Sauv/TFD - C.zip create mode 100644 content/static/TIPE_2007/C/TFD - C.tar.bz2 create mode 100644 content/static/TIPE_2007/C/TFD - C.zip create mode 100644 content/static/TIPE_2007/Dossier/Dossier_TIPE_2007_TF.pdf create mode 100644 content/static/TIPE_2007/Dossier/Dossier_TIPE_2007_TF.pdf.sansTOC create mode 100644 content/static/TIPE_2007/Dossier/Transparents_TIPE_2007_TF.pdf create mode 100644 content/static/TIPE_2007/Maple/TFD - Old.mw create mode 100644 content/static/TIPE_2007/Maple/TFD.mw create mode 100644 content/static/TIPE_2007/Octave/Multiplication.m create mode 100644 content/static/TIPE_2007/Octave/TFD - Octave.tar.bz2 create mode 100644 content/static/TIPE_2007/Octave/TFD - Octave.zip create mode 100644 content/static/TIPE_2007/Octave/TFDI - Octave.tar.bz2 create mode 100644 content/static/TIPE_2007/Octave/TFDI - Octave.zip (limited to 'content/static') diff --git a/content/static/CV/CV_1P.pdf b/content/static/CV/CV_1P.pdf new file mode 100644 index 0000000..1024c67 Binary files /dev/null and b/content/static/CV/CV_1P.pdf differ diff --git a/content/static/CV/CV_2P.pdf b/content/static/CV/CV_2P.pdf new file mode 100644 index 0000000..00ca488 Binary files /dev/null and b/content/static/CV/CV_2P.pdf differ diff --git a/content/static/Projets/1A/Allumettes.jar b/content/static/Projets/1A/Allumettes.jar new file mode 100644 index 0000000..d50b19c Binary files /dev/null and b/content/static/Projets/1A/Allumettes.jar differ diff --git a/content/static/Projets/1A/Particules.tar.gz b/content/static/Projets/1A/Particules.tar.gz new file mode 100644 index 0000000..6df4bde Binary files /dev/null and b/content/static/Projets/1A/Particules.tar.gz differ diff --git a/content/static/Projets/1A/Rapport-Enigma.pdf b/content/static/Projets/1A/Rapport-Enigma.pdf new file mode 100644 index 0000000..95d9b8e Binary files /dev/null and b/content/static/Projets/1A/Rapport-Enigma.pdf differ diff --git a/content/static/Projets/1A/Rapport-Huffman.pdf b/content/static/Projets/1A/Rapport-Huffman.pdf new file mode 100644 index 0000000..b87f8de Binary files /dev/null and b/content/static/Projets/1A/Rapport-Huffman.pdf differ diff --git a/content/static/Projets/1A/Rapport-Particules.pdf b/content/static/Projets/1A/Rapport-Particules.pdf new file mode 100644 index 0000000..cd1f6e0 Binary files /dev/null and b/content/static/Projets/1A/Rapport-Particules.pdf differ diff --git a/content/static/Projets/1A/Rapport-UML.pdf b/content/static/Projets/1A/Rapport-UML.pdf new file mode 100644 index 0000000..a79de9a Binary files /dev/null and b/content/static/Projets/1A/Rapport-UML.pdf differ diff --git a/content/static/Projets/1A/UML.jar b/content/static/Projets/1A/UML.jar new file mode 100644 index 0000000..de8f86e Binary files /dev/null and b/content/static/Projets/1A/UML.jar differ diff --git a/content/static/Projets/2A/Intergiciel.jar b/content/static/Projets/2A/Intergiciel.jar new file mode 100644 index 0000000..f8c84ab Binary files /dev/null and b/content/static/Projets/2A/Intergiciel.jar differ diff --git a/content/static/Projets/2A/MJC.tar.gz b/content/static/Projets/2A/MJC.tar.gz new file mode 100644 index 0000000..b8a189a Binary files /dev/null and b/content/static/Projets/2A/MJC.tar.gz differ diff --git a/content/static/Projets/2A/Rapport-Intergiciel.pdf b/content/static/Projets/2A/Rapport-Intergiciel.pdf new file mode 100644 index 0000000..24b92a4 Binary files /dev/null and b/content/static/Projets/2A/Rapport-Intergiciel.pdf differ diff --git a/content/static/Projets/2A/Rapport-eBide.pdf b/content/static/Projets/2A/Rapport-eBide.pdf new file mode 100644 index 0000000..8af09c7 Binary files /dev/null and b/content/static/Projets/2A/Rapport-eBide.pdf differ diff --git a/content/static/Projets/2A/Rapport-uJava.pdf b/content/static/Projets/2A/Rapport-uJava.pdf new file mode 100644 index 0000000..c0c5fcd Binary files /dev/null and b/content/static/Projets/2A/Rapport-uJava.pdf differ diff --git a/content/static/Projets/2A/Slides-eBide.pdf b/content/static/Projets/2A/Slides-eBide.pdf new file mode 100644 index 0000000..78e15d1 Binary files /dev/null and b/content/static/Projets/2A/Slides-eBide.pdf differ diff --git a/content/static/Projets/2A/VHDL.tar.bz2 b/content/static/Projets/2A/VHDL.tar.bz2 new file mode 100644 index 0000000..48de1fb Binary files /dev/null and b/content/static/Projets/2A/VHDL.tar.bz2 differ diff --git a/content/static/Projets/2A/eBide.tar.gz b/content/static/Projets/2A/eBide.tar.gz new file mode 100644 index 0000000..c5cfdb8 Binary files /dev/null and b/content/static/Projets/2A/eBide.tar.gz differ diff --git a/content/static/Projets/UdeM/Rapport-ShadowMap.pdf b/content/static/Projets/UdeM/Rapport-ShadowMap.pdf new file mode 100644 index 0000000..2804b04 Binary files /dev/null and b/content/static/Projets/UdeM/Rapport-ShadowMap.pdf differ diff --git a/content/static/Projets/UdeM/ShadowMap.tar.gz b/content/static/Projets/UdeM/ShadowMap.tar.gz new file mode 100644 index 0000000..eddef2e Binary files /dev/null and b/content/static/Projets/UdeM/ShadowMap.tar.gz differ diff --git a/content/static/Projets/UdeM/Slides-kdtree.pdf b/content/static/Projets/UdeM/Slides-kdtree.pdf new file mode 100644 index 0000000..4339dc4 Binary files /dev/null and b/content/static/Projets/UdeM/Slides-kdtree.pdf differ diff --git a/content/static/Projets/UdeM/paper107.pdf b/content/static/Projets/UdeM/paper107.pdf new file mode 100644 index 0000000..33c2f6b Binary files /dev/null and b/content/static/Projets/UdeM/paper107.pdf differ diff --git a/content/static/TIPE_2007/C/Sauv/TFD - C.tar.bz2 b/content/static/TIPE_2007/C/Sauv/TFD - C.tar.bz2 new file mode 100644 index 0000000..d8ca9fc Binary files /dev/null and b/content/static/TIPE_2007/C/Sauv/TFD - C.tar.bz2 differ diff --git a/content/static/TIPE_2007/C/Sauv/TFD - C.zip b/content/static/TIPE_2007/C/Sauv/TFD - C.zip new file mode 100644 index 0000000..bb60997 Binary files /dev/null and b/content/static/TIPE_2007/C/Sauv/TFD - C.zip differ diff --git a/content/static/TIPE_2007/C/TFD - C.tar.bz2 b/content/static/TIPE_2007/C/TFD - C.tar.bz2 new file mode 100644 index 0000000..9b207b7 Binary files /dev/null and b/content/static/TIPE_2007/C/TFD - C.tar.bz2 differ diff --git a/content/static/TIPE_2007/C/TFD - C.zip b/content/static/TIPE_2007/C/TFD - C.zip new file mode 100644 index 0000000..1e4a38f Binary files /dev/null and b/content/static/TIPE_2007/C/TFD - C.zip differ diff --git a/content/static/TIPE_2007/Dossier/Dossier_TIPE_2007_TF.pdf b/content/static/TIPE_2007/Dossier/Dossier_TIPE_2007_TF.pdf new file mode 100644 index 0000000..d6d5f29 Binary files /dev/null and b/content/static/TIPE_2007/Dossier/Dossier_TIPE_2007_TF.pdf differ diff --git a/content/static/TIPE_2007/Dossier/Dossier_TIPE_2007_TF.pdf.sansTOC b/content/static/TIPE_2007/Dossier/Dossier_TIPE_2007_TF.pdf.sansTOC new file mode 100644 index 0000000..d8a7a47 Binary files /dev/null and b/content/static/TIPE_2007/Dossier/Dossier_TIPE_2007_TF.pdf.sansTOC differ diff --git a/content/static/TIPE_2007/Dossier/Transparents_TIPE_2007_TF.pdf b/content/static/TIPE_2007/Dossier/Transparents_TIPE_2007_TF.pdf new file mode 100644 index 0000000..25434b7 Binary files /dev/null and b/content/static/TIPE_2007/Dossier/Transparents_TIPE_2007_TF.pdf differ diff --git a/content/static/TIPE_2007/Maple/TFD - Old.mw b/content/static/TIPE_2007/Maple/TFD - Old.mw new file mode 100644 index 0000000..950dcc2 --- /dev/null +++ b/content/static/TIPE_2007/Maple/TFD - Old.mw @@ -0,0 +1,496 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +restart: + + +
+<Text-field style="Heading 1" layout="Heading 1"><Font encoding="UTF-8">Calcul de la TFD par une proc\303\251dure "na\303\257ve"</Font></Text-field> +Cette proc\303\251dure calcule les coefficients de Fourier par une m\303\251thode dite "naive". + + +TFDSimple:=proc(x) + +local n,X: +n:=nops(x): + +X:=[seq(sum(x[j]*exp(-2*I*(j-1)*(k-1)*Pi/n),j=1..n),k=1..n)]; + + +end proc: + + +
+
+<Text-field style="Heading 1" layout="Heading 1"><Font encoding="UTF-8">Calcul de la TFD par une proc\303\251dure r\303\251cursive</Font></Text-field> +Cette proc\303\251dure prend en entr\303\251e une liste repr\303\251sentant les coefficients d'un polyn\303\264me dont on cherche \303\240 calculer les coefficients de Fourier. + + +TFDRecur:=proc(x) + +local N,CoefFFT,xp,xi,u,v,omega: +N:=nops(x): + +if N=1 then CoefFFT:=x: +else + +xp:=[seq(x[2*i],i=1..N/2)]: +xi:=[seq(x[2*i-1],i=1..N/2)]: +u:=TFDRecur(xp): +v:=TFDRecur(xi): + +omega:=exp(-2*I*Pi/N): + +CoefFFT:=[seq(omega^(k-1)*u[k]+v[k],k=1..N/2),seq(-omega^(k-1)*u[k]+v[k],k=1..N/2)]; +end if: +CoefFFT; + +end proc: + + +
+
+<Text-field style="Heading 1" layout="Heading 1"><Font encoding="UTF-8">Calcul de la TFD par it\303\251ration</Font></Text-field> +On va utiliser l'\303\251criture des divers coefficients en binaire. + + + +TFDIter:=proc(x) +local n,i,j,k,a,b,p,l,z,w,h,m,tmp: +n:=nops(x): +l:=x; +p:=n/2; #p: puissance max dans d\303\251composition. + +while p>=1 do +#On fait les signaux jusqu'a 2^p + z:=1; #premi\303\250re valeur de omega. + w:=exp(-I*Pi/p); #c'est omega. + + for h from 1 to p do #Variable servant \303\240 la d\303\251composition + for m from 1 to n/(2*p) do + #On va calculer le signal xm + #prendre l'exemple du Butterfly pour illustrer + a:=h+2*(m-1)*p:#indice du signal pour j_(r-1) + b:=a+p; + tmp:=(l[a]-l[b])*z: + l[a]:=l[a]+l[b]: + l[b]:=tmp: + end do: + #On passe au signal m+1 -> w<-w^(m+1) + z:=z*w: + end do: + p:=p/2: +end do: + +#On a maintenant notre liste contenant les signaux x_r +#Il reste \303\240 remettre les signaux dans le bon ordre. + +j:=1: +for i from 1 to n do + if j>i then tmp:=l[j]: + l[j]:=l[i]: + l[i]:=tmp: + end if: + p:=n/2: + while p>=2 and j>p do + j:=j-p: + p:=p/2: + end do: + j:=j+p: +end do: +return l; + + +end proc: + + +
+
+<Text-field style="Heading 1" layout="Heading 1"><Font encoding="UTF-8">Calcul de la Transform\303\251e Inverse.</Font></Text-field> +De m\303\252me, il est possible d'effectuer deux m\303\251thodes pour calculer la transform\303\251e inverse de Fourier : +
+<Text-field style="Heading 2" layout="Heading 2"><Font encoding="UTF-8">La m\303\251thode na\303\257ve</Font></Text-field> +En utilisant le m\303\252me algorithme, on obtient : + + +TFDISimple:=proc(X) + +local n,F: +n:=nops(X): + +F:=[seq((1/n)*sum(X[i]*exp(2*I*(j-1)*(i-1)*Pi/(n)),i=1..n),j=1..n)]; + +end proc: + + +
+
+<Text-field style="Heading 2" layout="Heading 2"><Font encoding="UTF-8">La m\303\251thode r\303\251cursive</Font></Text-field> +Attention : Pour que l'on puisse retrouver les valeurs initiales, +il ne faut pas oublier de diviser par le nombre de valeurs. + + +TFDIRecur:=proc(X) +local Coef,N,Xi,Xp,U,V,Omega,k; +N:=nops(X); + +if N=1 then Coef:=X: +else + Xi:=[seq(X[2*k-1],k=1..N/2)]; + Xp:=[seq(X[2*k],k=1..N/2)]; + U:=TFDIRecur(Xi); + V:=TFDIRecur(Xp); + Omega:=exp(2*I*Pi/N); + Coef:=[seq(U[k]+Omega^(k-1)*V[k],k=1..N/2),seq(U[k]-Omega^(k-1)*V[k],k=1..N/2)]: + end if; +Coef; +end proc: + + +
+
+<Text-field style="Heading 2" layout="Heading 2"><Font encoding="UTF-8">La m\303\251thode it\303\251rative</Font></Text-field> + + + +TFDIIter:=proc(x) +local n,i,j,k,a,b,p,l,z,w,h,m,tmp: +n:=nops(x): +l:=x; +p:=n/2; + +while p>=1 do + z:=1; + w:=exp(I*Pi/p); #C'est la diff\303\251rence + + for h from 1 to p do + for m from 1 to n/(2*p) do + a:=h+2*(m-1)*p: + b:=a+p; + tmp:=(l[a]-l[b])*z: + l[a]:=l[a]+l[b]: + l[b]:=tmp: + end do: + z:=z*w: + end do: + p:=p/2: +end do: + +j:=1: +for i from 1 to n do + if j>i then tmp:=l[j]: + l[j]:=l[i]: + l[i]:=tmp: + end if: + p:=n/2: + while p>=2 and j>p do + j:=j-p: + p:=p/2: + end do: + j:=j+p: +end do: +return l/n; +end proc: + + +
+
+
+<Text-field style="Heading 1" layout="Heading 1">Mesure du temps de calcul</Text-field> +On va ici s'inter\303\251sser \303\240 la mesure du temps pris pour calculer les coefficients de Fourier (Transform\303\251e Directe) par la m\303\251thode na\303\257ve et la m\303\251thode r\303\251cursive pour n grand, par exemple n=2^5, n=2^10, n=2^20. +Pour cela, on va d\303\251finir la liste de nos coefficients, entiers compris entre -50 et 50 par exemple, par une m\303\251thode "pseudo-al\303\251atoire" : + + + +with(RandomTools[MersenneTwister]); +A:=[seq(GenerateInteger32(),i=1..2^5)]: + + +NiQtSShtZmVuY2VkRzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliR0YoNiwtSSNtaUdGJTY5US5HZW5lcmF0ZUZsb2F0RigvJSdmYW1pbHlHUTBUaW1lc35OZXd+Um9tYW5GKC8lJXNpemVHUSMxMkYoLyUlYm9sZEdRJmZhbHNlRigvJSdpdGFsaWNHUSV0cnVlRigvJSp1bmRlcmxpbmVHRjgvJSpzdWJzY3JpcHRHRjgvJSxzdXBlcnNjcmlwdEdGOC8lK2ZvcmVncm91bmRHUSpbMCwwLDI1NV1GKC8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdRigvJSdvcGFxdWVHRjgvJStleGVjdXRhYmxlR0Y4LyUpcmVhZG9ubHlHRjgvJSljb21wb3NlZEdGOC8lKmNvbnZlcnRlZEdGOC8lK2ltc2VsZWN0ZWRHRjgvJSxwbGFjZWhvbGRlckdGOC8lMGZvbnRfc3R5bGVfbmFtZUdRKjJEfk91dHB1dEYoLyUqbWF0aGNvbG9yR0ZELyUvbWF0aGJhY2tncm91bmRHRkcvJStmb250ZmFtaWx5R0YyLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGKC8lKW1hdGhzaXplR0Y1LUYtNjlRMEdlbmVyYXRlRmxvYXQ2NEYoRjBGM0Y2RjlGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRmluRlxvLUYtNjlRMEdlbmVyYXRlSW50ZWdlckYoRjBGM0Y2RjlGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRmluRlxvLUYtNjlRMkdlbmVyYXRlSW50ZWdlcjMyRihGMEYzRjZGOUY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GaW5GXG8tRi02OVE2R2VuZXJhdGVVbnNpZ25lZEludDMyRihGMEYzRjZGOUY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GaW5GXG8tRi02OVEpR2V0U3RhdGVGKEYwRjNGNkY5RjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZpbkZcby1GLTY5US1OZXdHZW5lcmF0b3JGKEYwRjNGNkY5RjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZpbkZcby1GLTY5USlTZXRTdGF0ZUYoRjBGM0Y2RjlGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRmluRlxvLyUlb3BlbkdRJyZsc3FiO0YoLyUmY2xvc2VHUScmcnNxYjtGKDcjNypJLkdlbmVyYXRlRmxvYXRHRihJMEdlbmVyYXRlRmxvYXQ2NEdGKEkwR2VuZXJhdGVJbnRlZ2VyR0YoSTJHZW5lcmF0ZUludGVnZXIzMkdGKEk2R2VuZXJhdGVVbnNpZ25lZEludDMyR0YoSSlHZXRTdGF0ZUdGKEktTmV3R2VuZXJhdG9yR0YoSSlTZXRTdGF0ZUdGKA== + + +
+<Text-field style="Heading 2" layout="Heading 2"><Font encoding="UTF-8">M\303\251thode na\303\257ve</Font></Text-field> +On effectue le calcul pour la m\303\251thode it\303\251rative : + + +t:=time(): +N:=TFDSimple(A): +Temps := time()-t; + + +NiQtSSVtcm93RzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliR0YoNiYtSSNtaUdGJTY5USZUZW1wc0YoLyUnZmFtaWx5R1EwVGltZXN+TmV3flJvbWFuRigvJSVzaXplR1EjMTJGKC8lJWJvbGRHUSZmYWxzZUYoLyUnaXRhbGljR1EldHJ1ZUYoLyUqdW5kZXJsaW5lR0Y4LyUqc3Vic2NyaXB0R0Y4LyUsc3VwZXJzY3JpcHRHRjgvJStmb3JlZ3JvdW5kR1EqWzAsMCwyNTVdRigvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XUYoLyUnb3BhcXVlR0Y4LyUrZXhlY3V0YWJsZUdGOC8lKXJlYWRvbmx5R0Y4LyUpY29tcG9zZWRHRjgvJSpjb252ZXJ0ZWRHRjgvJStpbXNlbGVjdGVkR0Y4LyUscGxhY2Vob2xkZXJHRjgvJTBmb250X3N0eWxlX25hbWVHUSoyRH5PdXRwdXRGKC8lKm1hdGhjb2xvckdGRC8lL21hdGhiYWNrZ3JvdW5kR0ZHLyUrZm9udGZhbWlseUdGMi8lLG1hdGh2YXJpYW50R1EnaXRhbGljRigvJSltYXRoc2l6ZUdGNS1JI21vR0YlNjNRKSZBc3NpZ247RigvJSVmb3JtR1EmaW5maXhGKC8lJmZlbmNlR0Y4LyUqc2VwYXJhdG9yR0Y4LyUnbHNwYWNlR1EvdGhpY2ttYXRoc3BhY2VGKC8lJ3JzcGFjZUdGW3AvJSlzdHJldGNoeUdGOC8lKnN5bW1ldHJpY0dGOC8lKG1heHNpemVHUSlpbmZpbml0eUYoLyUobWluc2l6ZUdRIjFGKC8lKGxhcmdlb3BHRjgvJS5tb3ZhYmxlbGltaXRzR0Y4LyUnYWNjZW50R0Y4LyUwZm9udF9zdHlsZV9uYW1lR0ZYLyUlc2l6ZUdGNS8lK2ZvcmVncm91bmRHRkQvJStiYWNrZ3JvdW5kR0ZHLUkjbW5HRiU2OVEmMC4wOTZGKEYwRjNGNi9GOkY4RjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbi9Gam5RJ25vcm1hbEYoRlxvL0krbXNlbWFudGljc0dGJVEjOj1GKDcjLV9GKUksbXByaW50c2xhc2hHRig2JDcjPkkmVGVtcHNHRigkIiMnKiEiJDcjRmhy + + +
+
+<Text-field style="Heading 2" layout="Heading 2"><Font encoding="UTF-8">M\303\251thode r\303\251cursive</Font></Text-field> +Calcul pour la m\303\251thode r\303\251cursive : + + +t:=time(): +R:=TFDRecur(A): +Temps := time()-t; + + +NiQtSSVtcm93RzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliR0YoNiYtSSNtaUdGJTY5USZUZW1wc0YoLyUnZmFtaWx5R1EwVGltZXN+TmV3flJvbWFuRigvJSVzaXplR1EjMTJGKC8lJWJvbGRHUSZmYWxzZUYoLyUnaXRhbGljR1EldHJ1ZUYoLyUqdW5kZXJsaW5lR0Y4LyUqc3Vic2NyaXB0R0Y4LyUsc3VwZXJzY3JpcHRHRjgvJStmb3JlZ3JvdW5kR1EqWzAsMCwyNTVdRigvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XUYoLyUnb3BhcXVlR0Y4LyUrZXhlY3V0YWJsZUdGOC8lKXJlYWRvbmx5R0Y4LyUpY29tcG9zZWRHRjgvJSpjb252ZXJ0ZWRHRjgvJStpbXNlbGVjdGVkR0Y4LyUscGxhY2Vob2xkZXJHRjgvJTBmb250X3N0eWxlX25hbWVHUSoyRH5PdXRwdXRGKC8lKm1hdGhjb2xvckdGRC8lL21hdGhiYWNrZ3JvdW5kR0ZHLyUrZm9udGZhbWlseUdGMi8lLG1hdGh2YXJpYW50R1EnaXRhbGljRigvJSltYXRoc2l6ZUdGNS1JI21vR0YlNjNRKSZBc3NpZ247RigvJSVmb3JtR1EmaW5maXhGKC8lJmZlbmNlR0Y4LyUqc2VwYXJhdG9yR0Y4LyUnbHNwYWNlR1EvdGhpY2ttYXRoc3BhY2VGKC8lJ3JzcGFjZUdGW3AvJSlzdHJldGNoeUdGOC8lKnN5bW1ldHJpY0dGOC8lKG1heHNpemVHUSlpbmZpbml0eUYoLyUobWluc2l6ZUdRIjFGKC8lKGxhcmdlb3BHRjgvJS5tb3ZhYmxlbGltaXRzR0Y4LyUnYWNjZW50R0Y4LyUwZm9udF9zdHlsZV9uYW1lR0ZYLyUlc2l6ZUdGNS8lK2ZvcmVncm91bmRHRkQvJStiYWNrZ3JvdW5kR0ZHLUkjbW5HRiU2OVEmMC4wMDRGKEYwRjNGNi9GOkY4RjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbi9Gam5RJ25vcm1hbEYoRlxvL0krbXNlbWFudGljc0dGJVEjOj1GKDcjLV9GKUksbXByaW50c2xhc2hHRig2JDcjPkkmVGVtcHNHRigkIiIlISIkNyNGaHI= + + +
+
+<Text-field style="Heading 2" layout="Heading 2"><Font encoding="UTF-8">M\303\251thode it\303\251rative</Font></Text-field> + + + +t:=time(): +I:=TFDIter(A): +Temps:= time()-t; + + +Error, illegal use of an object as a name + + +NiQtSSVtcm93RzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliR0YoNiYtSSNtaUdGJTY5USZUZW1wc0YoLyUnZmFtaWx5R1EwVGltZXN+TmV3flJvbWFuRigvJSVzaXplR1EjMTJGKC8lJWJvbGRHUSZmYWxzZUYoLyUnaXRhbGljR1EldHJ1ZUYoLyUqdW5kZXJsaW5lR0Y4LyUqc3Vic2NyaXB0R0Y4LyUsc3VwZXJzY3JpcHRHRjgvJStmb3JlZ3JvdW5kR1EqWzAsMCwyNTVdRigvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XUYoLyUnb3BhcXVlR0Y4LyUrZXhlY3V0YWJsZUdGOC8lKXJlYWRvbmx5R0Y4LyUpY29tcG9zZWRHRjgvJSpjb252ZXJ0ZWRHRjgvJStpbXNlbGVjdGVkR0Y4LyUscGxhY2Vob2xkZXJHRjgvJTBmb250X3N0eWxlX25hbWVHUSoyRH5PdXRwdXRGKC8lKm1hdGhjb2xvckdGRC8lL21hdGhiYWNrZ3JvdW5kR0ZHLyUrZm9udGZhbWlseUdGMi8lLG1hdGh2YXJpYW50R1EnaXRhbGljRigvJSltYXRoc2l6ZUdGNS1JI21vR0YlNjNRKSZBc3NpZ247RigvJSVmb3JtR1EmaW5maXhGKC8lJmZlbmNlR0Y4LyUqc2VwYXJhdG9yR0Y4LyUnbHNwYWNlR1EvdGhpY2ttYXRoc3BhY2VGKC8lJ3JzcGFjZUdGW3AvJSlzdHJldGNoeUdGOC8lKnN5bW1ldHJpY0dGOC8lKG1heHNpemVHUSlpbmZpbml0eUYoLyUobWluc2l6ZUdRIjFGKC8lKGxhcmdlb3BHRjgvJS5tb3ZhYmxlbGltaXRzR0Y4LyUnYWNjZW50R0Y4LyUwZm9udF9zdHlsZV9uYW1lR0ZYLyUlc2l6ZUdGNS8lK2ZvcmVncm91bmRHRkQvJStiYWNrZ3JvdW5kR0ZHLUkjbW5HRiU2OVEjMC5GKEYwRjNGNi9GOkY4RjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbi9Gam5RJ25vcm1hbEYoRlxvL0krbXNlbWFudGljc0dGJVEjOj1GKDcjLV9GKUksbXByaW50c2xhc2hHRig2JDcjPkkmVGVtcHNHRigkIiIhRmlyNyNGaHI= + + + + + + + +
+
+
+<Text-field style="Heading 1" layout="Heading 1"><Font encoding="UTF-8">Multiplication de polyn\303\264mes</Font></Text-field> +
+<Text-field style="Heading 2" layout="Heading 2">Algorithme</Text-field> +On va prendre en entr\303\251e deux listes contenant les coefficients des deux polyn\303\264mes dont on cherche \303\240 calculer le produit. +Utilise la m\303\251thode simple, car sinon impose en plus une condition sur le degr\303\251 des polyn\303\264mes. + + +Multiplication:=proc(P,Q) + +local n,N,R,A,B,i,j,k: + +n:=nops(P): + +#On cr\303\251e la liste des coefficients \303\251tendus \303\240 2n \303\251l\303\251ments. +A:=[seq(P[k],k=1..n),seq(0,k=n+1..2*n)]; +B:=[seq(Q[k],k=1..n),seq(0,k=n+1..2*n)]; + +#On calcule la TFD de chacune de ces listes. +A:=TFDIter(A): +B:=TFDIter(B): + +#On effectue les produits +R:=[seq(A[k]*B[k],k=1..2*n)]: + +#On r\303\251cup\303\250re les coefficients. +TFDIIter(R); + +end proc: + + + + + + + +
+
+<Text-field style="Heading 2" layout="Heading 2">Exemple</Text-field> +
+<Text-field style="Heading 3" layout="Heading 3">Maple</Text-field> +On va poser LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYmLUkjbWlHRiQ2OVEiUEYnLyUnZmFtaWx5R1EwVGltZXN+TmV3flJvbWFuRicvJSVzaXplR1EjMTJGJy8lJWJvbGRHUSZmYWxzZUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUqdW5kZXJsaW5lR0Y3LyUqc3Vic2NyaXB0R0Y3LyUsc3VwZXJzY3JpcHRHRjcvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUrYmFja2dyb3VuZEdRLlsyNTUsMjU1LDI1NV1GJy8lJ29wYXF1ZUdGNy8lK2V4ZWN1dGFibGVHRjcvJSlyZWFkb25seUdGNy8lKWNvbXBvc2VkR0Y3LyUqY29udmVydGVkR0Y3LyUraW1zZWxlY3RlZEdGNy8lLHBsYWNlaG9sZGVyR0Y3LyUwZm9udF9zdHlsZV9uYW1lR1EoMkR+TWF0aEYnLyUqbWF0aGNvbG9yR0ZDLyUvbWF0aGJhY2tncm91bmRHRkYvJStmb250ZmFtaWx5R0YxLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy8lKW1hdGhzaXplR0Y0LUkjbW9HRiQ2M1EjOj1GJy8lJWZvcm1HUSZpbmZpeEYnLyUmZmVuY2VHRjcvJSpzZXBhcmF0b3JHRjcvJSdsc3BhY2VHUS90aGlja21hdGhzcGFjZUYnLyUncnNwYWNlR0Zqby8lKXN0cmV0Y2h5R0Y3LyUqc3ltbWV0cmljR0Y3LyUobWF4c2l6ZUdRKWluZmluaXR5RicvJShtaW5zaXplR1EiMUYnLyUobGFyZ2VvcEdGNy8lLm1vdmFibGVsaW1pdHNHRjcvJSdhY2NlbnRHRjcvJTBmb250X3N0eWxlX25hbWVHRlcvJSVzaXplR0Y0LyUrZm9yZWdyb3VuZEdGQy8lK2JhY2tncm91bmRHRkYtRiM2Jy1GLDY5USFGJ0YvRjJGNUY4RjtGPUY/RkFGREZHRklGS0ZNRk9GUUZTRlVGWEZaRmZuRmhuRltvLUkrbXVuZGVyb3ZlckdGJDYnLUZebzYzUSYmU3VtO0YnL0Zib1EncHJlZml4RidGZG9GZm8vRmlvUSQwZW1GJy9GXHBRLnRoaW5tYXRoc3BhY2VGJy9GXnBGOkZfcEZhcEZkcC9GaHBGOi9GanBGOkZbcUZdcUZfcUZhcUZjcS1GIzYnRmdxLUYsNjlRImlGJ0YvL0YzUSMxMEYnRjVGOEY7Rj1GPy9GQlEsWzIwMCwwLDIwMF1GJ0ZERkdGSUZLRk1GT0ZRL0ZURjpGVS9GWUZhc0ZaRmZuRmhuL0Zcb0Zfcy1GXm82M1EiPUYnRmFvRmRvRmZvRmhvRltwRl1wRl9wRmFwRmRwRmdwRmlwRltxRl1xRl9xRmFxRmNxLUkjbW5HRiQ2OVEiMEYnRi9GMkY1L0Y5RjdGO0Y9Rj9GQUZERkdGSUZLRk1GT0ZRRlNGVUZYRlpGZm4vRmluUSdub3JtYWxGJ0Zbb0ZncS1GIzYjLUZpczY5USMxMEYnRi9GMkY1Rlx0RjtGPUY/RkFGREZHRklGS0ZNRk9GUUZTRlVGWEZaRmZuRl10RltvRltxLyUsYWNjZW50dW5kZXJHRjdGZ3EtSSVtc3VwR0YkNiUtRiw2OVEjaVhGJ0YvRjJGNUY4RjtGPUY/RkFGREZHRklGS0ZNRk9GUUZTRlVGWEZaRmZuRmhuRltvLUYsNjlGXXNGL0YyRjVGOEY7Rj1GP0ZBRkRGR0ZJRktGTUZPRlFGU0ZVRlhGWkZmbkZobkZbby8lMXN1cGVyc2NyaXB0c2hpZnRHUSIwRidGZ3FGZ3E= et LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYmLUkjbWlHRiQ2OVEiUUYnLyUnZmFtaWx5R1EwVGltZXN+TmV3flJvbWFuRicvJSVzaXplR1EjMTJGJy8lJWJvbGRHUSZmYWxzZUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUqdW5kZXJsaW5lR0Y3LyUqc3Vic2NyaXB0R0Y3LyUsc3VwZXJzY3JpcHRHRjcvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUrYmFja2dyb3VuZEdRLlsyNTUsMjU1LDI1NV1GJy8lJ29wYXF1ZUdGNy8lK2V4ZWN1dGFibGVHRjcvJSlyZWFkb25seUdGNy8lKWNvbXBvc2VkR0Y3LyUqY29udmVydGVkR0Y3LyUraW1zZWxlY3RlZEdGNy8lLHBsYWNlaG9sZGVyR0Y3LyUwZm9udF9zdHlsZV9uYW1lR1EoMkR+TWF0aEYnLyUqbWF0aGNvbG9yR0ZDLyUvbWF0aGJhY2tncm91bmRHRkYvJStmb250ZmFtaWx5R0YxLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy8lKW1hdGhzaXplR0Y0LUkjbW9HRiQ2M1EjOj1GJy8lJWZvcm1HUSZpbmZpeEYnLyUmZmVuY2VHRjcvJSpzZXBhcmF0b3JHRjcvJSdsc3BhY2VHUS90aGlja21hdGhzcGFjZUYnLyUncnNwYWNlR0Zqby8lKXN0cmV0Y2h5R0Y3LyUqc3ltbWV0cmljR0Y3LyUobWF4c2l6ZUdRKWluZmluaXR5RicvJShtaW5zaXplR1EiMUYnLyUobGFyZ2VvcEdGNy8lLm1vdmFibGVsaW1pdHNHRjcvJSdhY2NlbnRHRjcvJTBmb250X3N0eWxlX25hbWVHRlcvJSVzaXplR0Y0LyUrZm9yZWdyb3VuZEdGQy8lK2JhY2tncm91bmRHRkYtRiM2KS1GLDY5USFGJ0YvRjJGNUY4RjtGPUY/RkFGREZHRklGS0ZNRk9GUUZTRlVGWEZaRmZuRmhuRltvLUkrbXVuZGVyb3ZlckdGJDYnLUZebzYzUSYmU3VtO0YnL0Zib1EncHJlZml4RidGZG9GZm8vRmlvUSQwZW1GJy9GXHBRLnRoaW5tYXRoc3BhY2VGJy9GXnBGOkZfcEZhcEZkcC9GaHBGOi9GanBGOkZbcUZdcUZfcUZhcUZjcS1GIzYmRmdxLUYsNjlRImlGJ0YvL0YzUSMxMEYnRjVGOEY7Rj1GPy9GQlEsWzIwMCwwLDIwMF1GJ0ZERkdGSUZLRk1GT0ZRL0ZURjpGVS9GWUZhc0ZaRmZuRmhuL0Zcb0Zfcy1GXm82M1EiPUYnRmFvRmRvRmZvRmhvRltwRl1wRl9wRmFwRmRwRmdwRmlwRltxRl1xRl9xRmFxRmNxLUkjbW5HRiQ2OVEiMEYnRi9GMkY1L0Y5RjdGO0Y9Rj9GQUZERkdGSUZLRk1GT0ZRRlNGVUZYRlpGZm4vRmluUSdub3JtYWxGJ0Zbby1GaXM2OVEjMTBGJ0YvRjJGNUZcdEY7Rj1GP0ZBRkRGR0ZJRktGTUZPRlFGU0ZVRlhGWkZmbkZddEZbb0ZbcS8lLGFjY2VudHVuZGVyR0Y3RmdxLUklbXN1cEdGJDYlLUYsNjlGXXNGL0YyRjVGOEY7Rj1GP0ZBRkRGR0ZJRktGTUZPRlFGU0ZVRlhGWkZmbkZobkZbb0ZndC8lMXN1cGVyc2NyaXB0c2hpZnRHUSIwRidGZ3EtRmV0NiUtRiw2OVEiWEYnRi9GMkY1RjhGO0Y9Rj9GQUZERkdGSUZLRk1GT0ZRRlNGVUZYRlpGZm5GaG5GW29GZ3RGaXRGZ3FGZ3E= + + +P:=sum(i*X^i,i=0..15); + + +NiQtSSVtcm93RzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliR0YoNiYtSSNtaUdGJTY5USJQRigvJSdmYW1pbHlHUTBUaW1lc35OZXd+Um9tYW5GKC8lJXNpemVHUSMxMkYoLyUlYm9sZEdRJmZhbHNlRigvJSdpdGFsaWNHUSV0cnVlRigvJSp1bmRlcmxpbmVHRjgvJSpzdWJzY3JpcHRHRjgvJSxzdXBlcnNjcmlwdEdGOC8lK2ZvcmVncm91bmRHUSpbMCwwLDI1NV1GKC8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdRigvJSdvcGFxdWVHRjgvJStleGVjdXRhYmxlR0Y4LyUpcmVhZG9ubHlHRjgvJSljb21wb3NlZEdGOC8lKmNvbnZlcnRlZEdGOC8lK2ltc2VsZWN0ZWRHRjgvJSxwbGFjZWhvbGRlckdGOC8lMGZvbnRfc3R5bGVfbmFtZUdRKjJEfk91dHB1dEYoLyUqbWF0aGNvbG9yR0ZELyUvbWF0aGJhY2tncm91bmRHRkcvJStmb250ZmFtaWx5R0YyLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGKC8lKW1hdGhzaXplR0Y1LUkjbW9HRiU2M1EpJkFzc2lnbjtGKC8lJWZvcm1HUSZpbmZpeEYoLyUmZmVuY2VHRjgvJSpzZXBhcmF0b3JHRjgvJSdsc3BhY2VHUS90aGlja21hdGhzcGFjZUYoLyUncnNwYWNlR0ZbcC8lKXN0cmV0Y2h5R0Y4LyUqc3ltbWV0cmljR0Y4LyUobWF4c2l6ZUdRKWluZmluaXR5RigvJShtaW5zaXplR1EiMUYoLyUobGFyZ2VvcEdGOC8lLm1vdmFibGVsaW1pdHNHRjgvJSdhY2NlbnRHRjgvJTBmb250X3N0eWxlX25hbWVHRlgvJSVzaXplR0Y1LyUrZm9yZWdyb3VuZEdGRC8lK2JhY2tncm91bmRHRkctRiQ2QC1GLTY5USJYRihGMEYzRjZGOUY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GaW5GXG8tRl9vNjNRJyZwbHVzO0YoRmJvRmVvRmdvL0Zqb1EwbWVkaXVtbWF0aHNwYWNlRigvRl1wRl9yRl5wRmBwRmJwRmVwRmhwRmpwRlxxRl5xRmBxRmJxRmRxLUYkNiYtSSNtbkdGJTY5USIyRihGMEYzRjYvRjpGOEY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ24vRmpuUSdub3JtYWxGKEZcby1GX282M1ExJkludmlzaWJsZVRpbWVzO0YoRmJvRmVvRmdvL0Zqb1EkMGVtRigvRl1wRl5zRl5wRmBwRmJwRmVwRmhwRmpwRlxxRl5xRmBxRmJxRmRxLUklbXN1cEdGJTYlRmhxRmNyLyUxc3VwZXJzY3JpcHRzaGlmdEdRIjBGKC9JK21zZW1hbnRpY3NHRiVRIipGKEZbci1GJDYmLUZkcjY5USIzRihGMEYzRjZGZ3JGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRmhyRlxvRmpyLUZhczYlRmhxRlt0RmNzRmZzRltyLUYkNiYtRmRyNjlRIjRGKEYwRjNGNkZnckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GaHJGXG9GanItRmFzNiVGaHFGYnRGY3NGZnNGW3ItRiQ2Ji1GZHI2OVEiNUYoRjBGM0Y2RmdyRjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZockZcb0Zqci1GYXM2JUZocUZpdEZjc0Zmc0Zbci1GJDYmLUZkcjY5USI2RihGMEYzRjZGZ3JGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRmhyRlxvRmpyLUZhczYlRmhxRmB1RmNzRmZzRltyLUYkNiYtRmRyNjlRIjdGKEYwRjNGNkZnckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GaHJGXG9GanItRmFzNiVGaHFGZ3VGY3NGZnNGW3ItRiQ2Ji1GZHI2OVEiOEYoRjBGM0Y2RmdyRjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZockZcb0Zqci1GYXM2JUZocUZedkZjc0Zmc0Zbci1GJDYmLUZkcjY5USI5RihGMEYzRjZGZ3JGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRmhyRlxvRmpyLUZhczYlRmhxRmV2RmNzRmZzRltyLUYkNiYtRmRyNjlRIzEwRihGMEYzRjZGZ3JGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRmhyRlxvRmpyLUZhczYlRmhxRlx3RmNzRmZzRltyLUYkNiYtRmRyNjlRIzExRihGMEYzRjZGZ3JGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRmhyRlxvRmpyLUZhczYlRmhxRmN3RmNzRmZzRltyLUYkNiYtRmRyNjlRIzEyRihGMEYzRjZGZ3JGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRmhyRlxvRmpyLUZhczYlRmhxRmp3RmNzRmZzRltyLUYkNiYtRmRyNjlRIzEzRihGMEYzRjZGZ3JGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRmhyRlxvRmpyLUZhczYlRmhxRmF4RmNzRmZzRltyLUYkNiYtRmRyNjlRIzE0RihGMEYzRjZGZ3JGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRmhyRlxvRmpyLUZhczYlRmhxRmh4RmNzRmZzRltyLUYkNiYtRmRyNjlRIzE1RihGMEYzRjZGZ3JGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRmhyRlxvRmpyLUZhczYlRmhxRl95RmNzRmZzL0Znc1EiK0YoL0Znc1EjOj1GKDcjLV9GKUksbXByaW50c2xhc2hHRig2JDcjPkkiUEdGKCxASSJYR0YoIiIiKiYiIiNGYnopRmF6RmR6RmJ6RmJ6KiYiIiRGYnopRmF6Rmd6RmJ6RmJ6KiYiIiVGYnopRmF6Rmp6RmJ6RmJ6KiYiIiZGYnopRmF6Rl1bbEZiekZieiomIiInRmJ6KUZhekZgW2xGYnpGYnoqJiIiKEZieilGYXpGY1tsRmJ6RmJ6KiYiIilGYnopRmF6RmZbbEZiekZieiomIiIqRmJ6KUZhekZpW2xGYnpGYnoqJiIjNUZieilGYXpGXFxsRmJ6RmJ6KiYiIzZGYnopRmF6Rl9cbEZiekZieiomIiM3RmJ6KUZhekZiXGxGYnpGYnoqJiIjOEZieilGYXpGZVxsRmJ6RmJ6KiYiIzlGYnopRmF6RmhcbEZiekZieiomIiM6RmJ6KUZhekZbXWxGYnpGYno3I0Zgeg== + + + + +Q:=sum(i^i*X^i,i=0..15); + + +NiQtSSVtcm93RzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliR0YoNiYtSSNtaUdGJTY5USJRRigvJSdmYW1pbHlHUTBUaW1lc35OZXd+Um9tYW5GKC8lJXNpemVHUSMxMkYoLyUlYm9sZEdRJmZhbHNlRigvJSdpdGFsaWNHUSV0cnVlRigvJSp1bmRlcmxpbmVHRjgvJSpzdWJzY3JpcHRHRjgvJSxzdXBlcnNjcmlwdEdGOC8lK2ZvcmVncm91bmRHUSpbMCwwLDI1NV1GKC8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdRigvJSdvcGFxdWVHRjgvJStleGVjdXRhYmxlR0Y4LyUpcmVhZG9ubHlHRjgvJSljb21wb3NlZEdGOC8lKmNvbnZlcnRlZEdGOC8lK2ltc2VsZWN0ZWRHRjgvJSxwbGFjZWhvbGRlckdGOC8lMGZvbnRfc3R5bGVfbmFtZUdRKjJEfk91dHB1dEYoLyUqbWF0aGNvbG9yR0ZELyUvbWF0aGJhY2tncm91bmRHRkcvJStmb250ZmFtaWx5R0YyLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGKC8lKW1hdGhzaXplR0Y1LUkjbW9HRiU2M1EpJkFzc2lnbjtGKC8lJWZvcm1HUSZpbmZpeEYoLyUmZmVuY2VHRjgvJSpzZXBhcmF0b3JHRjgvJSdsc3BhY2VHUS90aGlja21hdGhzcGFjZUYoLyUncnNwYWNlR0ZbcC8lKXN0cmV0Y2h5R0Y4LyUqc3ltbWV0cmljR0Y4LyUobWF4c2l6ZUdRKWluZmluaXR5RigvJShtaW5zaXplR1EiMUYoLyUobGFyZ2VvcEdGOC8lLm1vdmFibGVsaW1pdHNHRjgvJSdhY2NlbnRHRjgvJTBmb250X3N0eWxlX25hbWVHRlgvJSVzaXplR0Y1LyUrZm9yZWdyb3VuZEdGRC8lK2JhY2tncm91bmRHRkctRiQ2Qi1JI21uR0YlNjlGZ3BGMEYzRjYvRjpGOEY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ24vRmpuUSdub3JtYWxGKEZcby1GX282M1EnJnBsdXM7RihGYm9GZW9GZ28vRmpvUTBtZWRpdW1tYXRoc3BhY2VGKC9GXXBGYnJGXnBGYHBGYnBGZXBGaHBGanBGXHFGXnFGYHFGYnFGZHEtRi02OVEiWEYoRjBGM0Y2RjlGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRmluRlxvRl5yLUYkNiYtRmlxNjlRIjRGKEYwRjNGNkZbckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GXHJGXG8tRl9vNjNRMSZJbnZpc2libGVUaW1lcztGKEZib0Zlb0Znby9Gam9RJDBlbUYoL0ZdcEZgc0ZecEZgcEZicEZlcEZocEZqcEZccUZecUZgcUZicUZkcS1JJW1zdXBHRiU2JUZkci1GaXE2OVEiMkYoRjBGM0Y2RltyRjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZcckZcby8lMXN1cGVyc2NyaXB0c2hpZnRHUSIwRigvSSttc2VtYW50aWNzR0YlUSIqRihGXnItRiQ2Ji1GaXE2OVEjMjdGKEYwRjNGNkZbckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GXHJGXG9GXHMtRmNzNiVGZHItRmlxNjlRIjNGKEYwRjNGNkZbckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GXHJGXG9GaHNGW3RGXnItRiQ2Ji1GaXE2OVEkMjU2RihGMEYzRjZGW3JGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRlxyRlxvRlxzLUZjczYlRmRyRmlyRmhzRlt0Rl5yLUYkNiYtRmlxNjlRJTMxMjVGKEYwRjNGNkZbckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GXHJGXG9GXHMtRmNzNiVGZHItRmlxNjlRIjVGKEYwRjNGNkZbckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GXHJGXG9GaHNGW3RGXnItRiQ2Ji1GaXE2OVEmNDY2NTZGKEYwRjNGNkZbckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GXHJGXG9GXHMtRmNzNiVGZHItRmlxNjlRIjZGKEYwRjNGNkZbckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GXHJGXG9GaHNGW3RGXnItRiQ2Ji1GaXE2OVEnODIzNTQzRihGMEYzRjZGW3JGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRlxyRlxvRlxzLUZjczYlRmRyLUZpcTY5USI3RihGMEYzRjZGW3JGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRlxyRlxvRmhzRlt0Rl5yLUYkNiYtRmlxNjlRKTE2Nzc3MjE2RihGMEYzRjZGW3JGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRlxyRlxvRlxzLUZjczYlRmRyLUZpcTY5USI4RihGMEYzRjZGW3JGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRlxyRlxvRmhzRlt0Rl5yLUYkNiYtRmlxNjlRKjM4NzQyMDQ4OUYoRjBGM0Y2RltyRjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZcckZcb0Zccy1GY3M2JUZkci1GaXE2OVEiOUYoRjBGM0Y2RltyRjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZcckZcb0Zoc0ZbdEZeci1GJDYmLUZpcTY5USwxMDAwMDAwMDAwMEYoRjBGM0Y2RltyRjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZcckZcb0Zccy1GY3M2JUZkci1GaXE2OVEjMTBGKEYwRjNGNkZbckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GXHJGXG9GaHNGW3RGXnItRiQ2Ji1GaXE2OVEtMjg1MzExNjcwNjExRihGMEYzRjZGW3JGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRlxyRlxvRlxzLUZjczYlRmRyLUZpcTY5USMxMUYoRjBGM0Y2RltyRjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZcckZcb0Zoc0ZbdEZeci1GJDYmLUZpcTY5US44OTE2MTAwNDQ4MjU2RihGMEYzRjZGW3JGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRlxyRlxvRlxzLUZjczYlRmRyLUZpcTY5USMxMkYoRjBGM0Y2RltyRjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZcckZcb0Zoc0ZbdEZeci1GJDYmLUZpcTY5UTAzMDI4NzUxMDY1OTIyNTNGKEYwRjNGNkZbckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GXHJGXG9GXHMtRmNzNiVGZHItRmlxNjlRIzEzRihGMEYzRjZGW3JGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRlxyRlxvRmhzRlt0Rl5yLUYkNiYtRmlxNjlRMjExMTEyMDA2ODI1NTU4MDE2RihGMEYzRjZGW3JGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRlxyRlxvRlxzLUZjczYlRmRyLUZpcTY5USMxNEYoRjBGM0Y2RltyRjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZcckZcb0Zoc0ZbdEZeci1GJDYmLUZpcTY5UTM0Mzc4OTM4OTAzODA4NTkzNzVGKEYwRjNGNkZbckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GXHJGXG9GXHMtRmNzNiVGZHItRmlxNjlRIzE1RihGMEYzRjZGW3JGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRlxyRlxvRmhzRlt0L0ZcdFEiK0YoL0ZcdFEjOj1GKDcjLV9GKUksbXByaW50c2xhc2hHRig2JDcjPkkiUUdGKCxCIiIiRmpcbEkiWEdGKEZqXGwqJiIiJUZqXGwpRltdbCIiI0ZqXGxGalxsKiYiI0ZGalxsKUZbXWwiIiRGalxsRmpcbComIiRjI0ZqXGwpRltdbEZdXWxGalxsRmpcbComIiVESkZqXGwpRltdbCIiJkZqXGxGalxsKiYiJmNtJUZqXGwpRltdbCIiJ0ZqXGxGalxsKiYiJ1ZOIylGalxsKUZbXWwiIihGalxsRmpcbComIik7c3g7RmpcbClGW11sIiIpRmpcbEZqXGwqJiIqKls/dVFGalxsKUZbXWwiIipGalxsRmpcbComIiwrKysrKyJGalxsKUZbXWwiIzVGalxsRmpcbComIi02MW42YEdGalxsKUZbXWwiIzZGalxsRmpcbComIi5jI1svNTsqKUZqXGwpRltdbCIjN0ZqXGxGalxsKiYiMGBBZjFeKEdJRmpcbClGW11sIiM4RmpcbEZqXGwqJiIyOyFlYiNvKzc2IkZqXGwpRltdbCIjOUZqXGxGalxsKiYiM3YkZjNRISpRKnlWRmpcbClGW11sIiM6RmpcbEZqXGw3I0ZpXGw= + + + + +R:=expand(P*Q); + + +NiQtSSVtcm93RzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliR0YoNiYtSSNtaUdGJTY5USJSRigvJSdmYW1pbHlHUTBUaW1lc35OZXd+Um9tYW5GKC8lJXNpemVHUSMxMkYoLyUlYm9sZEdRJmZhbHNlRigvJSdpdGFsaWNHUSV0cnVlRigvJSp1bmRlcmxpbmVHRjgvJSpzdWJzY3JpcHRHRjgvJSxzdXBlcnNjcmlwdEdGOC8lK2ZvcmVncm91bmRHUSpbMCwwLDI1NV1GKC8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdRigvJSdvcGFxdWVHRjgvJStleGVjdXRhYmxlR0Y4LyUpcmVhZG9ubHlHRjgvJSljb21wb3NlZEdGOC8lKmNvbnZlcnRlZEdGOC8lK2ltc2VsZWN0ZWRHRjgvJSxwbGFjZWhvbGRlckdGOC8lMGZvbnRfc3R5bGVfbmFtZUdRKjJEfk91dHB1dEYoLyUqbWF0aGNvbG9yR0ZELyUvbWF0aGJhY2tncm91bmRHRkcvJStmb250ZmFtaWx5R0YyLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGKC8lKW1hdGhzaXplR0Y1LUkjbW9HRiU2M1EpJkFzc2lnbjtGKC8lJWZvcm1HUSZpbmZpeEYoLyUmZmVuY2VHRjgvJSpzZXBhcmF0b3JHRjgvJSdsc3BhY2VHUS90aGlja21hdGhzcGFjZUYoLyUncnNwYWNlR0ZbcC8lKXN0cmV0Y2h5R0Y4LyUqc3ltbWV0cmljR0Y4LyUobWF4c2l6ZUdRKWluZmluaXR5RigvJShtaW5zaXplR1EiMUYoLyUobGFyZ2VvcEdGOC8lLm1vdmFibGVsaW1pdHNHRjgvJSdhY2NlbnRHRjgvJTBmb250X3N0eWxlX25hbWVHRlgvJSVzaXplR0Y1LyUrZm9yZWdyb3VuZEdGRC8lK2JhY2tncm91bmRHRkctRiQ2aG4tRi02OVEiWEYoRjBGM0Y2RjlGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRmluRlxvLUZfbzYzUScmcGx1cztGKEZib0Zlb0Znby9Gam9RMG1lZGl1bW1hdGhzcGFjZUYoL0ZdcEZfckZecEZgcEZicEZlcEZocEZqcEZccUZecUZgcUZicUZkcS1GJDYmLUkjbW5HRiU2OVE0NjI5NzE5NDU2NzcxNTQwMTQ5MEYoRjBGM0Y2L0Y6RjhGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduL0ZqblEnbm9ybWFsRihGXG8tRl9vNjNRMSZJbnZpc2libGVUaW1lcztGKEZib0Zlb0Znby9Gam9RJDBlbUYoL0ZdcEZec0ZecEZgcEZicEZlcEZocEZqcEZccUZecUZgcUZicUZkcS1JJW1zdXBHRiU2JUZocS1GZHI2OVEjMjlGKEYwRjNGNkZnckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GaHJGXG8vJTFzdXBlcnNjcmlwdHNoaWZ0R1EiMEYoL0krbXNlbWFudGljc0dGJVEiKkYoRltyLUYkNiYtRmRyNjlRNDE4MDkwMTc2MzU1NTY1NzQ2NzhGKEYwRjNGNkZnckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GaHJGXG9GanItRmFzNiVGaHEtRmRyNjlRIzE5RihGMEYzRjZGZ3JGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRmhyRlxvRmZzRmlzRltyLUYkNiYtRmRyNjlRNDIyNTgzMzU2MTk2ODY3NzAzNzhGKEYwRjNGNkZnckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GaHJGXG9GanItRmFzNiVGaHEtRmRyNjlRIzIwRihGMEYzRjZGZ3JGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRmhyRlxvRmZzRmlzRltyLUYkNiYtRmRyNjlRMzkxMDM4MTY2NzI5NjE3NTUyNEYoRjBGM0Y2RmdyRjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZockZcb0Zqci1GYXM2JUZocS1GZHI2OVEjMTdGKEYwRjNGNkZnckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GaHJGXG9GZnNGaXNGW3ItRiQ2Ji1GZHI2OVE0MTM1OTY5OTY1MTQyNjM3NTI4N0YoRjBGM0Y2RmdyRjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZockZcb0Zqci1GYXM2JUZocS1GZHI2OVEjMThGKEYwRjNGNkZnckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GaHJGXG9GZnNGaXNGW3ItRiQ2Ji1GZHI2OVEiM0YoRjBGM0Y2RmdyRjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZockZcb0Zqci1GYXM2JUZocS1GZHI2OVEiMkYoRjBGM0Y2RmdyRjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZockZcb0Zmc0Zpc0Zbci1GJDYmLUZkcjY5USI5RihGMEYzRjZGZ3JGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRmhyRlxvRmpyLUZhczYlRmhxRmZ2RmZzRmlzRltyLUYkNiYtRmRyNjlRIzQyRihGMEYzRjZGZ3JGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRmhyRlxvRmpyLUZhczYlRmhxLUZkcjY5USI0RihGMEYzRjZGZ3JGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRmhyRlxvRmZzRmlzRltyLUYkNiYtRmRyNjlRJDMzMUYoRjBGM0Y2RmdyRjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZockZcb0Zqci1GYXM2JUZocS1GZHI2OVEiNUYoRjBGM0Y2RmdyRjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZockZcb0Zmc0Zpc0Zbci1GJDYmLUZkcjY5USo0MjM2NDk1NzVGKEYwRjNGNkZnckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GaHJGXG9GanItRmFzNiVGaHEtRmRyNjlRIzEwRihGMEYzRjZGZ3JGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRmhyRlxvRmZzRmlzRltyLUYkNiYtRmRyNjlRLDEwODI4NzIwODkzRihGMEYzRjZGZ3JGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRmhyRlxvRmpyLUZhczYlRmhxLUZkcjY5USMxMUYoRjBGM0Y2RmdyRjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZockZcb0Zmc0Zpc0Zbci1GJDYmLUZkcjY5USc5Mjc0MjhGKEYwRjNGNkZnckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GaHJGXG9GanItRmFzNiVGaHEtRmRyNjlRIjhGKEYwRjNGNkZnckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GaHJGXG9GZnNGaXNGW3ItRiQ2Ji1GZHI2OVEpMTg1NzgyNTdGKEYwRjNGNkZnckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GaHJGXG9GanItRmFzNiVGaHFGYHdGZnNGaXNGW3ItRiQ2Ji1GZHI2OVElMzc0NUYoRjBGM0Y2RmdyRjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZockZcb0Zqci1GYXM2JUZocS1GZHI2OVEiNkYoRjBGM0Y2RmdyRjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZockZcb0Zmc0Zpc0Zbci1GJDYmLUZkcjY5USY1MzgxNUYoRjBGM0Y2RmdyRjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZockZcb0Zqci1GYXM2JUZocS1GZHI2OVEiN0YoRjBGM0Y2RmdyRjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZockZcb0Zmc0Zpc0Zbci1GJDYmLUZkcjY5UTQ1NDAzNTU2NzY2MzAxNTgyMDkwRihGMEYzRjZGZ3JGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRmhyRlxvRmpyLUZhczYlRmhxLUZkcjY5USMyN0YoRjBGM0Y2RmdyRjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZockZcb0Zmc0Zpc0Zbci1GJDYmLUZkcjY5UTQ1ODUyNzMxNzk3MTA3ODY3ODk0RihGMEYzRjZGZ3JGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRmhyRlxvRmpyLUZhczYlRmhxLUZkcjY5USMyOEYoRjBGM0Y2RmdyRjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZockZcb0Zmc0Zpc0Zbci1GJDYmLUZkcjY5US0zMDY1NDU0NjI4MjJGKEYwRjNGNkZnckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GaHJGXG9GanItRmFzNiVGaHEtRmRyNjlRIzEyRihGMEYzRjZGZ3JGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRmhyRlxvRmZzRmlzRltyLUYkNiYtRmRyNjlRLjk1MTgzNjI2NTMwMDdGKEYwRjNGNkZnckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GaHJGXG9GanItRmFzNiVGaHEtRmRyNjlRIzEzRihGMEYzRjZGZ3JGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRmhyRlxvRmZzRmlzRltyLUYkNiYtRmRyNjlRMDMyMTYwNTI4NjQzNTQ0NUYoRjBGM0Y2RmdyRjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZockZcb0Zqci1GYXM2JUZocS1GZHI2OVEjMTRGKEYwRjNGNkZnckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GaHJGXG9GZnNGaXNGW3ItRiQ2Ji1GZHI2OVE0NjU2ODQwODM1NTcxMjg5MDYyNUYoRjBGM0Y2RmdyRjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZockZcb0Zqci1GYXM2JUZocS1GZHI2OVEjMzBGKEYwRjNGNkZnckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GaHJGXG9GZnNGaXNGW3ItRiQ2Ji1GZHI2OVEyMTE3NDU2OTkwMzU3NzU4OTlGKEYwRjNGNkZnckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GaHJGXG9GanItRmFzNiVGaHEtRmRyNjlRIzE1RihGMEYzRjZGZ3JGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRmhyRlxvRmZzRmlzRltyLUYkNiYtRmRyNjlRMzQ2MTA2MzY4MzE2NTk3NTcxMkYoRjBGM0Y2RmdyRjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZockZcb0Zqci1GYXM2JUZocS1GZHI2OVEjMTZGKEYwRjNGNkZnckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GaHJGXG9GZnNGaXNGW3ItRiQ2Ji1GZHI2OVE0MjcwNzY1MzYwMzgxNjkxOTkxOEYoRjBGM0Y2RmdyRjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZockZcb0Zqci1GYXM2JUZocS1GZHI2OVEjMjFGKEYwRjNGNkZnckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GaHJGXG9GZnNGaXNGW3ItRiQ2Ji1GZHI2OVE0MzE1Njk3MTU4Nzk0NjM2OTgzN0YoRjBGM0Y2RmdyRjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZockZcb0Zqci1GYXM2JUZocS1GZHI2OVEjMjJGKEYwRjNGNkZnckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GaHJGXG9GZnNGaXNGW3ItRiQ2Ji1GZHI2OVE0MzYwNjI4OTU3MjA2MzM0MjkwOEYoRjBGM0Y2RmdyRjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZockZcb0Zqci1GYXM2JUZocS1GZHI2OVEjMjNGKEYwRjNGNkZnckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GaHJGXG9GZnNGaXNGW3ItRiQ2Ji1GZHI2OVE0NDA1NTYwNzU1NTkyNDIzMzY2OEYoRjBGM0Y2RmdyRjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZockZcb0Zqci1GYXM2JUZocS1GZHI2OVEjMjRGKEYwRjNGNkZnckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GaHJGXG9GZnNGaXNGW3ItRiQ2Ji1GZHI2OVE0NDUwNDkyNTUzMzgzODA1NDg0NEYoRjBGM0Y2RmdyRjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZockZcb0Zqci1GYXM2JUZocS1GZHI2OVEjMjVGKEYwRjNGNkZnckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GaHJGXG9GZnNGaXNGW3ItRiQ2Ji1GZHI2OVE0NDk1NDI0MzM1NzU2MzE4MzM1NUYoRjBGM0Y2RmdyRjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZockZcb0Zqci1GYXM2JUZocS1GZHI2OVEjMjZGKEYwRjNGNkZnckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GaHJGXG9GZnNGaXMvRmpzUSIrRigvRmpzUSM6PUYoNyMtX0YpSSxtcHJpbnRzbGFzaEdGKDYkNyM+SSJSR0YoLGhuSSJYR0YoIiIiKiYiNCFcLGFyblg+KEgnRlxmbClGW2ZsIiNIRlxmbEZcZmwqJiI0eVlkY2JqPCE0PUZcZmwpRltmbCIjPkZcZmxGXGZsKiYiNHkueCdvPmNMZUFGXGZsKUZbZmwiIz9GXGZsRlxmbComIjNDYjwnSG47UTUqRlxmbClGW2ZsIiM8RlxmbEZcZmwqJiI0KEd2alVeJypwZjhGXGZsKUZbZmwiIz1GXGZsRlxmbComIiIkRlxmbClGW2ZsIiIjRlxmbEZcZmwqJiIiKkZcZmwpRltmbEZiZ2xGXGZsRlxmbComIiNVRlxmbClGW2ZsIiIlRlxmbEZcZmwqJiIkSiRGXGZsKUZbZmwiIiZGXGZsRlxmbComIip2JlxPVUZcZmwpRltmbCIjNUZcZmxGXGZsKiYiLCQqM3NHMyJGXGZsKUZbZmwiIzZGXGZsRlxmbComIidHdSMqRlxmbClGW2ZsIiIpRlxmbEZcZmwqJiIpZCN5Jj1GXGZsKUZbZmxGZmdsRlxmbEZcZmwqJiIlWFBGXGZsKUZbZmwiIidGXGZsRlxmbComIiY6USZGXGZsKUZbZmwiIihGXGZsRlxmbComIjQhNCNlLGp3Y05TJkZcZmwpRltmbCIjRkZcZmxGXGZsKiYiNCUqeSd5NSh6SkYmZUZcZmwpRltmbCIjR0ZcZmxGXGZsKiYiLUFHWVhsSUZcZmwpRltmbCIjN0ZcZmxGXGZsKiYiLjJJbGkkPSYqRlxmbClGW2ZsIiM4RlxmbEZcZmwqJiIwWGFWJ0cwO0tGXGZsKUZbZmwiIzlGXGZsRlxmbComIjREMSpHcmIkMyVvbEZcZmwpRltmbCIjSUZcZmxGXGZsKiYiMioqZXhOISpwWDwiRlxmbClGW2ZsIiM6RlxmbEZcZmwqJiIzN2QoZjskb2o1WUZcZmwpRltmbCIjO0ZcZmxGXGZsKiYiND0qPnAiUWdgd3EjRlxmbClGW2ZsIiNARlxmbEZcZmwqJiI0UClwaiV6ZXJwOiRGXGZsKUZbZmwiI0FGXGZsRlxmbComIjQzSE1qP2QqRzFPRlxmbClGW2ZsIiNCRlxmbEZcZmwqJiI0b09CQ2ZiMmMwJUZcZmwpRltmbCIjQ0ZcZmxGXGZsKiYiNFdbMFFRYERcXSVGXGZsKUZbZmwiI0RGXGZsRlxmbComIjRiTD1qdk5WVSZcRlxmbClGW2ZsIiNFRlxmbEZcZmw3I0ZqZWw= + + + + + + + +
+
+<Text-field style="Heading 3" layout="Heading 3">Algo</Text-field> + + + +P:=[seq(i,i=0..15)]; + + +NiQtSSVtcm93RzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliR0YoNiYtSSNtaUdGJTY5USJQRigvJSdmYW1pbHlHUTBUaW1lc35OZXd+Um9tYW5GKC8lJXNpemVHUSMxMkYoLyUlYm9sZEdRJmZhbHNlRigvJSdpdGFsaWNHUSV0cnVlRigvJSp1bmRlcmxpbmVHRjgvJSpzdWJzY3JpcHRHRjgvJSxzdXBlcnNjcmlwdEdGOC8lK2ZvcmVncm91bmRHUSpbMCwwLDI1NV1GKC8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdRigvJSdvcGFxdWVHRjgvJStleGVjdXRhYmxlR0Y4LyUpcmVhZG9ubHlHRjgvJSljb21wb3NlZEdGOC8lKmNvbnZlcnRlZEdGOC8lK2ltc2VsZWN0ZWRHRjgvJSxwbGFjZWhvbGRlckdGOC8lMGZvbnRfc3R5bGVfbmFtZUdRKjJEfk91dHB1dEYoLyUqbWF0aGNvbG9yR0ZELyUvbWF0aGJhY2tncm91bmRHRkcvJStmb250ZmFtaWx5R0YyLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGKC8lKW1hdGhzaXplR0Y1LUkjbW9HRiU2M1EpJkFzc2lnbjtGKC8lJWZvcm1HUSZpbmZpeEYoLyUmZmVuY2VHRjgvJSpzZXBhcmF0b3JHRjgvJSdsc3BhY2VHUS90aGlja21hdGhzcGFjZUYoLyUncnNwYWNlR0ZbcC8lKXN0cmV0Y2h5R0Y4LyUqc3ltbWV0cmljR0Y4LyUobWF4c2l6ZUdRKWluZmluaXR5RigvJShtaW5zaXplR1EiMUYoLyUobGFyZ2VvcEdGOC8lLm1vdmFibGVsaW1pdHNHRjgvJSdhY2NlbnRHRjgvJTBmb250X3N0eWxlX25hbWVHRlgvJSVzaXplR0Y1LyUrZm9yZWdyb3VuZEdGRC8lK2JhY2tncm91bmRHRkctSShtZmVuY2VkR0YlNjQtSSNtbkdGJTY5USIwRihGMEYzRjYvRjpGOEY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ24vRmpuUSdub3JtYWxGKEZcby1GanE2OUZncEYwRjNGNkZdckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GXnJGXG8tRmpxNjlRIjJGKEYwRjNGNkZdckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GXnJGXG8tRmpxNjlRIjNGKEYwRjNGNkZdckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GXnJGXG8tRmpxNjlRIjRGKEYwRjNGNkZdckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GXnJGXG8tRmpxNjlRIjVGKEYwRjNGNkZdckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GXnJGXG8tRmpxNjlRIjZGKEYwRjNGNkZdckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GXnJGXG8tRmpxNjlRIjdGKEYwRjNGNkZdckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GXnJGXG8tRmpxNjlRIjhGKEYwRjNGNkZdckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GXnJGXG8tRmpxNjlRIjlGKEYwRjNGNkZdckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GXnJGXG8tRmpxNjlRIzEwRihGMEYzRjZGXXJGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRl5yRlxvLUZqcTY5USMxMUYoRjBGM0Y2Rl1yRjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZeckZcby1GanE2OVEjMTJGKEYwRjNGNkZdckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GXnJGXG8tRmpxNjlRIzEzRihGMEYzRjZGXXJGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRl5yRlxvLUZqcTY5USMxNEYoRjBGM0Y2Rl1yRjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZeckZcby1GanE2OVEjMTVGKEYwRjNGNkZdckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GXnJGXG8vJSVvcGVuR1EnJmxzcWI7RigvJSZjbG9zZUdRJyZyc3FiO0YoL0krbXNlbWFudGljc0dGJVEjOj1GKDcjLV9GKUksbXByaW50c2xhc2hHRig2JDcjPkkiUEdGKDcyIiIhIiIiIiIjIiIkIiIlIiImIiInIiIoIiIpIiIqIiM1IiM2IiM3IiM4IiM5IiM6NyNGXXY= + + + + +Q:=[seq(i^i,i=0..15)]; + + +NiQtSSVtcm93RzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliR0YoNiYtSSNtaUdGJTY5USJRRigvJSdmYW1pbHlHUTBUaW1lc35OZXd+Um9tYW5GKC8lJXNpemVHUSMxMkYoLyUlYm9sZEdRJmZhbHNlRigvJSdpdGFsaWNHUSV0cnVlRigvJSp1bmRlcmxpbmVHRjgvJSpzdWJzY3JpcHRHRjgvJSxzdXBlcnNjcmlwdEdGOC8lK2ZvcmVncm91bmRHUSpbMCwwLDI1NV1GKC8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdRigvJSdvcGFxdWVHRjgvJStleGVjdXRhYmxlR0Y4LyUpcmVhZG9ubHlHRjgvJSljb21wb3NlZEdGOC8lKmNvbnZlcnRlZEdGOC8lK2ltc2VsZWN0ZWRHRjgvJSxwbGFjZWhvbGRlckdGOC8lMGZvbnRfc3R5bGVfbmFtZUdRKjJEfk91dHB1dEYoLyUqbWF0aGNvbG9yR0ZELyUvbWF0aGJhY2tncm91bmRHRkcvJStmb250ZmFtaWx5R0YyLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGKC8lKW1hdGhzaXplR0Y1LUkjbW9HRiU2M1EpJkFzc2lnbjtGKC8lJWZvcm1HUSZpbmZpeEYoLyUmZmVuY2VHRjgvJSpzZXBhcmF0b3JHRjgvJSdsc3BhY2VHUS90aGlja21hdGhzcGFjZUYoLyUncnNwYWNlR0ZbcC8lKXN0cmV0Y2h5R0Y4LyUqc3ltbWV0cmljR0Y4LyUobWF4c2l6ZUdRKWluZmluaXR5RigvJShtaW5zaXplR1EiMUYoLyUobGFyZ2VvcEdGOC8lLm1vdmFibGVsaW1pdHNHRjgvJSdhY2NlbnRHRjgvJTBmb250X3N0eWxlX25hbWVHRlgvJSVzaXplR0Y1LyUrZm9yZWdyb3VuZEdGRC8lK2JhY2tncm91bmRHRkctSShtZmVuY2VkR0YlNjQtSSNtbkdGJTY5RmdwRjBGM0Y2L0Y6RjhGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduL0ZqblEnbm9ybWFsRihGXG9GaXEtRmpxNjlRIjRGKEYwRjNGNkZcckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GXXJGXG8tRmpxNjlRIzI3RihGMEYzRjZGXHJGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRl1yRlxvLUZqcTY5USQyNTZGKEYwRjNGNkZcckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GXXJGXG8tRmpxNjlRJTMxMjVGKEYwRjNGNkZcckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GXXJGXG8tRmpxNjlRJjQ2NjU2RihGMEYzRjZGXHJGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRl1yRlxvLUZqcTY5USc4MjM1NDNGKEYwRjNGNkZcckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GXXJGXG8tRmpxNjlRKTE2Nzc3MjE2RihGMEYzRjZGXHJGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRl1yRlxvLUZqcTY5USozODc0MjA0ODlGKEYwRjNGNkZcckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GXXJGXG8tRmpxNjlRLDEwMDAwMDAwMDAwRihGMEYzRjZGXHJGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRl1yRlxvLUZqcTY5US0yODUzMTE2NzA2MTFGKEYwRjNGNkZcckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GXXJGXG8tRmpxNjlRLjg5MTYxMDA0NDgyNTZGKEYwRjNGNkZcckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GXXJGXG8tRmpxNjlRMDMwMjg3NTEwNjU5MjI1M0YoRjBGM0Y2RlxyRjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZdckZcby1GanE2OVEyMTExMTIwMDY4MjU1NTgwMTZGKEYwRjNGNkZcckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GXXJGXG8tRmpxNjlRMzQzNzg5Mzg5MDM4MDg1OTM3NUYoRjBGM0Y2RlxyRjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZdckZcby8lJW9wZW5HUScmbHNxYjtGKC8lJmNsb3NlR1EnJnJzcWI7RigvSSttc2VtYW50aWNzR0YlUSM6PUYoNyMtX0YpSSxtcHJpbnRzbGFzaEdGKDYkNyM+SSJRR0YoNzIiIiJGW3YiIiUiI0YiJGMjIiVESiImY20lIidWTiMpIik7c3g7IioqWz91USIsKysrKysiIi02MW42YEciLmMjWy81OyopIjBgQWYxXihHSSIyOyFlYiNvKzc2IiIzdiRmM1EhKlEqeVY3I0ZqdQ== + + + + +R:=evalf(Multiplication(P,Q)): + + + + +R:=[seq(round(R[j]),j=1..20)]; + + +NiQtSSVtcm93RzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliR0YoNiYtSSNtaUdGJTY5USJSRigvJSdmYW1pbHlHUTBUaW1lc35OZXd+Um9tYW5GKC8lJXNpemVHUSMxMkYoLyUlYm9sZEdRJmZhbHNlRigvJSdpdGFsaWNHUSV0cnVlRigvJSp1bmRlcmxpbmVHRjgvJSpzdWJzY3JpcHRHRjgvJSxzdXBlcnNjcmlwdEdGOC8lK2ZvcmVncm91bmRHUSpbMCwwLDI1NV1GKC8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdRigvJSdvcGFxdWVHRjgvJStleGVjdXRhYmxlR0Y4LyUpcmVhZG9ubHlHRjgvJSljb21wb3NlZEdGOC8lKmNvbnZlcnRlZEdGOC8lK2ltc2VsZWN0ZWRHRjgvJSxwbGFjZWhvbGRlckdGOC8lMGZvbnRfc3R5bGVfbmFtZUdRKjJEfk91dHB1dEYoLyUqbWF0aGNvbG9yR0ZELyUvbWF0aGJhY2tncm91bmRHRkcvJStmb250ZmFtaWx5R0YyLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGKC8lKW1hdGhzaXplR0Y1LUkjbW9HRiU2M1EpJkFzc2lnbjtGKC8lJWZvcm1HUSZpbmZpeEYoLyUmZmVuY2VHRjgvJSpzZXBhcmF0b3JHRjgvJSdsc3BhY2VHUS90aGlja21hdGhzcGFjZUYoLyUncnNwYWNlR0ZbcC8lKXN0cmV0Y2h5R0Y4LyUqc3ltbWV0cmljR0Y4LyUobWF4c2l6ZUdRKWluZmluaXR5RigvJShtaW5zaXplR1EiMUYoLyUobGFyZ2VvcEdGOC8lLm1vdmFibGVsaW1pdHNHRjgvJSdhY2NlbnRHRjgvJTBmb250X3N0eWxlX25hbWVHRlgvJSVzaXplR0Y1LyUrZm9yZWdyb3VuZEdGRC8lK2JhY2tncm91bmRHRkctSShtZmVuY2VkR0YlNjgtRiQ2Ji1JI21uR0YlNjlRKy0zMDAwMDAwMDBGKEYwRjNGNi9GOkY4RjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbi9Gam5RJ25vcm1hbEYoRlxvLUZfbzYzUScmcGx1cztGKEZib0Zlb0Znby9Gam9RMG1lZGl1bW1hdGhzcGFjZUYoL0ZdcEZmckZecEZgcEZicEZlcEZocEZqcEZccUZecUZgcUZicUZkcS1GJDYmLUZccjY5USsxMzAwMDAwMDAwRihGMEYzRjZGX3JGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRmByRlxvLUZfbzYzUTEmSW52aXNpYmxlVGltZXM7RihGYm9GZW9GZ28vRmpvUSQwZW1GKC9GXXBGYXNGXnBGYHBGYnBGZXBGaHBGanBGXHFGXnFGYHFGYnFGZHEtRlxyNjlRLSZJbWFnaW5hcnlJO0YoRjBGM0Y2Rl9yRjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZgckZcby9JK21zZW1hbnRpY3NHRiVRIipGKC9GZ3NRIitGKC1GJDYmLUZccjY5USsyMzYwMDAwMDAwRihGMEYzRjZGX3JGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRmByRlxvRmJyLUYkNiYtRlxyNjlRKzQwMDAwMDAwMDBGKEYwRjNGNkZfckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GYHJGXG9GXXNGY3NGZnNGaXMtRiQ2Ji1GXHI2OVErNTAwMDAwMDAwMEYoRjBGM0Y2Rl9yRjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZgckZcb0Zdc0Zjc0Zmcy1GJDYmLUZccjY5USwtMjMwMDAwMDAwMEYoRjBGM0Y2Rl9yRjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZgckZcb0Zici1GJDYmLUZccjY5USsyMzAwMDAwMDAwRihGMEYzRjZGX3JGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRmByRlxvRl1zRmNzRmZzRmlzLUYkNiYtRlxyNjlRKy05MDAwMDAwMDBGKEYwRjNGNkZfckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GYHJGXG9GYnJGYHRGaXMtRiQ2Ji1GXHI2OVErLTgwMDAwMDAwMEYoRjBGM0Y2Rl9yRjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZgckZcb0ZickZldEZpcy1GJDYmLUZccjY5USwtMTAwMDAwMDAwMEYoRjBGM0Y2Rl9yRjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZgckZcb0ZickZldEZpcy1GJDYmLUZccjY5USozMDAwMDAwMDBGKEYwRjNGNkZfckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GYHJGXG9GYnItRiQ2Ji1GXHI2OVErMTE0MjAwMDAwMEYoRjBGM0Y2Rl9yRjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZgckZcb0Zdc0Zjc0Zmc0Zpcy1GJDYmLUZccjY5USs0NTM3NTAwMDAwRihGMEYzRjZGX3JGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRmByRlxvRl1zRmNzRmZzLUYkNiYtRlxyNjlRKzEwMDAwMDAwMDBGKEYwRjNGNkZfckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GYHJGXG9GYnItRiQ2Ji1GXHI2OVErNDU2ODc1MDAwMEYoRjBGM0Y2Rl9yRjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZgckZcb0Zdc0Zjc0Zmc0Zpcy1GJDYmRmR3RmJyLUYkNiYtRlxyNjlRKzUxNTYyNTAwMDBGKEYwRjNGNkZfckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GYHJGXG9GXXNGY3NGZnNGaXMtRiQ2Ji1GXHI2OVErOTAwMDAwMDAwMEYoRjBGM0Y2Rl9yRjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZgckZcb0Zici1GJDYmLUZccjY5USs1Mzg3NTAwMDAwRihGMEYzRjZGX3JGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRmByRlxvRl1zRmNzRmZzRmlzLUYkNiYtRlxyNjlRLTMwNzAwMDAwMDAwMEYoRjBGM0Y2Rl9yRjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZgckZcb0Zici1GJDYmLUZccjY5USs4ODUwMDAwMDAwRihGMEYzRjZGX3JGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRmByRlxvRl1zRmNzRmZzRmlzLUYkNiYtRlxyNjlRLjk1MjAwMDAwMDAwMDBGKEYwRjNGNkZfckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GYHJGXG9GYnItRiQ2Ji1GXHI2OVErNzcwMDAwMDAwMEYoRjBGM0Y2Rl9yRjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZgckZcb0Zdc0Zjc0Zmc0Zpcy1GJDYmLUZccjY5UTAzMjE2MDgwMDAwMDAwMDBGKEYwRjNGNkZfckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GYHJGXG9GYnItRiQ2Ji1GXHI2OVErNzY1NzUxNzk1N0YoRjBGM0Y2Rl9yRjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZgckZcb0Zdc0Zjc0Zmc0Zpcy1GJDYmLUZccjY5UTIxMTc0NTY5ODM1MDAwMDAwMEYoRjBGM0Y2Rl9yRjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZgckZcby1GX282M1EoJm1pbnVzO0YoRmJvRmVvRmdvRmVyRmdyRl5wRmBwRmJwRmVwRmhwRmpwRlxxRl5xRmBxRmJxRmRxLUYkNiYtRlxyNjlRKzIyMjQyOTM1ODlGKEYwRjNGNkZfckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GYHJGXG9GXXNGY3NGZnNGaXMtRiQ2Ji1GXHI2OVEzNDYxMDYzNjg0MDAwMDAwMDAwRihGMEYzRjZGX3JGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRmByRlxvRmBbbC1GJDYmLUZccjY5USo5MDAwMDAwMDBGKEYwRjNGNkZfckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GYHJGXG9GXXNGY3NGZnNGaXMtRiQ2Ji1GXHI2OVEzOTEwMzgxNjY5MTAwMDAwMDAwRihGMEYzRjZGX3JGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRmByRlxvRmBbbC1GJDYmLUZccjY5USsyMDAwMDAwMDAwRihGMEYzRjZGX3JGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRmByRlxvRl1zRmNzRmZzRmlzLUYkNiYtRlxyNjlRNDEzNTk2OTk2NTMwMDAwMDAwMDBGKEYwRjNGNkZfckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GYHJGXG9GYFtsLUYkNiYtRlxyNjlRKzMwMDAwMDAwMDBGKEYwRjNGNkZfckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GYHJGXG9GXXNGY3NGZnNGaXMtRiQ2Ji1GXHI2OVE0MTgwOTAxNzYzNDAwMDAwMDAwMEYoRjBGM0Y2Rl9yRjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZgckZcb0ZgW2wtRiQ2JkZldkZdc0Zjc0Zmc0Zpcy8lJW9wZW5HUScmbHNxYjtGKC8lJmNsb3NlR1EnJnJzcWI7RigvRmdzUSM6PUYoNyMtX0YpSSxtcHJpbnRzbGFzaEdGKDYkNyM+SSJSR0YoNzYsJiIqKysrKyQhIiIqJiIrKysrKzgiIiJeI0ZjX2xGY19sRmNfbCwmIisrKytnQkZjX2wqJiIrKysrK1NGY19sRmRfbEZjX2xGY19sKiYiKysrKytdRmNfbEZkX2xGY19sLCYiKysrKytCRmBfbComRlxgbEZjX2xGZF9sRmNfbEZjX2wsJiIqKysrKypGYF9sRmdfbEZjX2wsJiIqKysrKylGYF9sRmlfbEZjX2wsJiIrKysrKzVGYF9sRmlfbEZjX2wsJkZfX2xGY19sKiYiKysrK1U2RmNfbEZkX2xGY19sRmNfbComIisrK11QWEZjX2xGZF9sRmNfbCwmRmNgbEZjX2wqJiIrKyt2b1hGY19sRmRfbEZjX2xGY19sLCZGY2BsRmNfbComIisrK0RjXkZjX2xGZF9sRmNfbEZjX2wsJiIrKysrKyEqRmNfbComIisrK10oUSZGY19sRmRfbEZjX2xGY19sLCYiLSsrKytxSUZjX2wqJiIrKysrXSkpRmNfbEZkX2xGY19sRmNfbCwmIi4rKysrK18qRmNfbComIisrKysreEZjX2xGZF9sRmNfbEZjX2wsJiIwKysrKyEzO0tGY19sKiYiK2R6XmR3RmNfbEZkX2xGY19sRmNfbCwmIjIrKytdJClwWDwiRmNfbComIisqZSRIQ0FGY19sRmRfbEZjX2xGYF9sLCYiMysrKytTb2o1WUZjX2wqJkZfYGxGY19sRmRfbEZjX2xGYF9sLCYiMysrKysicDtRNSpGY19sKiYiKysrKys/RmNfbEZkX2xGY19sRmBfbCwmIjQrKysrSWwqcGY4RmNfbComIisrKysrSUZjX2xGZF9sRmNfbEZgX2wsJiI0KysrK1NqPCE0PUZjX2wqJkZfX2xGY19sRmRfbEZjX2xGYF9sNyNGXV9s + + + + + + + +
+
+
+
\ No newline at end of file diff --git a/content/static/TIPE_2007/Maple/TFD.mw b/content/static/TIPE_2007/Maple/TFD.mw new file mode 100644 index 0000000..87d6772 --- /dev/null +++ b/content/static/TIPE_2007/Maple/TFD.mw @@ -0,0 +1,472 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +restart: + + +
+<Text-field style="Heading 1" layout="Heading 1"><Font encoding="UTF-8">Calcul de la TFD par une proc\303\251dure "na\303\257ve"</Font></Text-field> +Cette proc\303\251dure calcule les coefficients de Fourier par une m\303\251thode dite "naive". + + +TFDSimple:=proc(x) + +local n,X: +n:=nops(x): + +X:=[seq(sum(x[j]*exp(-2*I*(j-1)*(k-1)*Pi/n),j=1..n),k=1..n)]; + +end proc: + + +
+
+<Text-field style="Heading 1" layout="Heading 1"><Font encoding="UTF-8">Calcul de la TFD par une proc\303\251dure r\303\251cursive</Font></Text-field> +Cette proc\303\251dure prend en entr\303\251e une liste repr\303\251sentant les coefficients d'un polyn\303\264me dont on cherche \303\240 calculer les coefficients de Fourier. + + +TFDRecur:=proc(x) + +local N,CoefFFT,xp,xi,u,v,omega: +N:=nops(x): + +if N=1 then CoefFFT:=x: +else + +xp:=[seq(x[2*i],i=1..N/2)]: +xi:=[seq(x[2*i-1],i=1..N/2)]: +u:=TFDRecur(xp): +v:=TFDRecur(xi): + +omega:=exp(-2*I*Pi/N): + +CoefFFT:=[seq(omega^(k-1)*u[k]+v[k],k=1..N/2),seq(-omega^(k-1)*u[k]+v[k],k=1..N/2)]; +end if: +CoefFFT; + +end proc: + + +
+
+<Text-field style="Heading 1" layout="Heading 1"><Font encoding="UTF-8">Calcul de la TFD par it\303\251ration</Font></Text-field> +On va utiliser l'\303\251criture des divers coefficients en binaire. + + + +TFDIter:=proc(x) +local n,i,j,k,a,b,p,l,z,w,h,m,tmp: +n:=nops(x): +l:=Array(1..n): +l:=Array(x): +p:=n/2:#p: puissance de 2 dans d\303\251composition. + +while p>=1 do + z:=1: #premi\303\250re valeur de omega. + w:=exp(-I*Pi/p): #c'est omega. + + for h from 1 to p do #Variable servant \303\240 la d\303\251composition + for m from 1 to n/(2*p) do + #On va calculer le signal xm + a:=h+2*(m-1)*p: #Premi\303\250re valeur du signal x_(m-1) + b:=a+p: #Seconde valeur du signal x_(m-1) + tmp:=(l[a]-l[b])*z: + l[a]:=l[a]+l[b]: #x_m(a) = x_(m-1)(a)+x_(m-1)(b) + l[b]:=tmp: #x_m(b) = (x_(m-1)(a)-x_(m-1)(b))*z + end do: + #On passe au signal m+1 -> w<-w^(m+1) + z:=z*w: + end do: + p:=p/2: +end do: + +#On a maintenant notre liste contenant les signaux x_r +#Il reste \303\240 remettre les signaux dans le bon ordre. +j:=1: +for i from 1 to n do + if j>i then tmp:=l[j]: + l[j]:=l[i]: + l[i]:=tmp: + end if: + p:=n/2: + while p>=2 and j>p do + j:=j-p: + p:=p/2: + end do: + j:=j+p: +end do: +l; +end proc: + + +
+
+<Text-field style="Heading 1" layout="Heading 1"><Font encoding="UTF-8">Calcul de la Transform\303\251e Inverse.</Font></Text-field> +De m\303\252me, il est possible d'effectuer deux m\303\251thodes pour calculer la transform\303\251e inverse de Fourier : +
+<Text-field style="Heading 2" layout="Heading 2"><Font encoding="UTF-8">La m\303\251thode na\303\257ve</Font></Text-field> +En utilisant le m\303\252me algorithme, on obtient : + + +TFDISimple:=proc(X) + +local n,F: +n:=nops(X): + +F:=[seq((1/n)*sum(X[i]*exp(2*I*(j-1)*(i-1)*Pi/(n)),i=1..n),j=1..n)]; + +end proc: + + +
+
+<Text-field style="Heading 2" layout="Heading 2"><Font encoding="UTF-8">La m\303\251thode r\303\251cursive</Font></Text-field> +Attention : Pour que l'on puisse retrouver les valeurs initiales, +il ne faut pas oublier de diviser par le nombre de valeurs. + + +TFDIRecur:=proc(X) +local Coef,N,Xi,Xp,U,V,Omega,k; +N:=nops(X); + +if N=1 then Coef:=X: +else + Xi:=[seq(X[2*k-1],k=1..N/2)]; + Xp:=[seq(X[2*k],k=1..N/2)]; + U:=TFDIRecur(Xi); + V:=TFDIRecur(Xp); + Omega:=exp(2*I*Pi/N); + Coef:=[seq(U[k]+Omega^(k-1)*V[k],k=1..N/2),seq(U[k]-Omega^(k-1)*V[k],k=1..N/2)]: + end if; +Coef; +end proc: + + +
+
+<Text-field style="Heading 2" layout="Heading 2"><Font encoding="UTF-8">La m\303\251thode it\303\251rative</Font></Text-field> + + + +TFDIIter:=proc(x) +local n,i,j,k,a,b,p,l,z,w,h,m,tmp: +n:=nops(x): +l:=Array(1..n): +l:=Array(x): +p:=n/2: + +while p>=1 do + z:=1: + w:=exp(I*Pi/p); #C'est la diff\303\251rence + + for h from 1 to p do + for m from 1 to n/(2*p) do + a:=h+2*(m-1)*p: + b:=a+p: + tmp:=(l[a]-l[b])*z: + l[a]:=l[a]+l[b]: + l[b]:=tmp: + end do: + z:=z*w: + end do: + p:=p/2: +end do: + +j:=1: +for i from 1 to n do + if j>i then tmp:=l[j]: + l[j]:=l[i]: + l[i]:=tmp: + end if: + p:=n/2: + while p>=2 and j>p do + j:=j-p: + p:=p/2: + end do: + j:=j+p: +end do: +for i from 1 to n do + l[i]:=l[i]/n: +end do: +return l; +end proc: + + +
+
+
+<Text-field style="Heading 1" layout="Heading 1">Mesure du temps de calcul</Text-field> +On va ici s'int\303\251resser \303\240 la mesure du temps n\303\251cessaire pour calculer les coefficients de Fourier (Transform\303\251e Directe) pour n "grand", par exemple n=2^5, n=2^10,... . +Pour cela, on va d\303\251finir la liste de nos coefficients par une m\303\251thode "pseudo-al\303\251atoire" : + + + +with(RandomTools[MersenneTwister]): +A:=[seq(GenerateFloat(),i=1..2^8)]: + + +
+<Text-field style="Heading 2" layout="Heading 2"><Font encoding="UTF-8">M\303\251thode na\303\257ve</Font></Text-field> +On effectue le calcul pour la m\303\251thode na\303\257ve : + + +t:=time(): +TFDSimple(A): +Temps := time()-t; + + +NiQtSSVtcm93RzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliR0YoNiYtSSNtaUdGJTY5USZUZW1wc0YoLyUnZmFtaWx5R1EwVGltZXN+TmV3flJvbWFuRigvJSVzaXplR1EjMTJGKC8lJWJvbGRHUSZmYWxzZUYoLyUnaXRhbGljR1EldHJ1ZUYoLyUqdW5kZXJsaW5lR0Y4LyUqc3Vic2NyaXB0R0Y4LyUsc3VwZXJzY3JpcHRHRjgvJStmb3JlZ3JvdW5kR1EqWzAsMCwyNTVdRigvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XUYoLyUnb3BhcXVlR0Y4LyUrZXhlY3V0YWJsZUdGOC8lKXJlYWRvbmx5R0Y4LyUpY29tcG9zZWRHRjgvJSpjb252ZXJ0ZWRHRjgvJStpbXNlbGVjdGVkR0Y4LyUscGxhY2Vob2xkZXJHRjgvJTBmb250X3N0eWxlX25hbWVHUSoyRH5PdXRwdXRGKC8lKm1hdGhjb2xvckdGRC8lL21hdGhiYWNrZ3JvdW5kR0ZHLyUrZm9udGZhbWlseUdGMi8lLG1hdGh2YXJpYW50R1EnaXRhbGljRigvJSltYXRoc2l6ZUdGNS1JI21vR0YlNjNRKSZBc3NpZ247RigvJSVmb3JtR1EmaW5maXhGKC8lJmZlbmNlR0Y4LyUqc2VwYXJhdG9yR0Y4LyUnbHNwYWNlR1EvdGhpY2ttYXRoc3BhY2VGKC8lJ3JzcGFjZUdGW3AvJSlzdHJldGNoeUdGOC8lKnN5bW1ldHJpY0dGOC8lKG1heHNpemVHUSlpbmZpbml0eUYoLyUobWluc2l6ZUdRIjFGKC8lKGxhcmdlb3BHRjgvJS5tb3ZhYmxlbGltaXRzR0Y4LyUnYWNjZW50R0Y4LyUwZm9udF9zdHlsZV9uYW1lR0ZYLyUlc2l6ZUdGNS8lK2ZvcmVncm91bmRHRkQvJStiYWNrZ3JvdW5kR0ZHLUkjbW5HRiU2OVEmNi40NzJGKEYwRjNGNi9GOkY4RjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbi9Gam5RJ25vcm1hbEYoRlxvL0krbXNlbWFudGljc0dGJVEjOj1GKDcjLV9GKUksbXByaW50c2xhc2hHRig2JDcjPkkmVGVtcHNHRigkIiVzayEiJDcjRmhy + + +
+
+<Text-field style="Heading 2" layout="Heading 2"><Font encoding="UTF-8">M\303\251thode r\303\251cursive</Font></Text-field> +Calcul pour la m\303\251thode r\303\251cursive : + + +t:=time(): +TFDRecur(A): +Temps := time()-t; + + +NiQtSSVtcm93RzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliR0YoNiYtSSNtaUdGJTY5USZUZW1wc0YoLyUnZmFtaWx5R1EwVGltZXN+TmV3flJvbWFuRigvJSVzaXplR1EjMTJGKC8lJWJvbGRHUSZmYWxzZUYoLyUnaXRhbGljR1EldHJ1ZUYoLyUqdW5kZXJsaW5lR0Y4LyUqc3Vic2NyaXB0R0Y4LyUsc3VwZXJzY3JpcHRHRjgvJStmb3JlZ3JvdW5kR1EqWzAsMCwyNTVdRigvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XUYoLyUnb3BhcXVlR0Y4LyUrZXhlY3V0YWJsZUdGOC8lKXJlYWRvbmx5R0Y4LyUpY29tcG9zZWRHRjgvJSpjb252ZXJ0ZWRHRjgvJStpbXNlbGVjdGVkR0Y4LyUscGxhY2Vob2xkZXJHRjgvJTBmb250X3N0eWxlX25hbWVHUSoyRH5PdXRwdXRGKC8lKm1hdGhjb2xvckdGRC8lL21hdGhiYWNrZ3JvdW5kR0ZHLyUrZm9udGZhbWlseUdGMi8lLG1hdGh2YXJpYW50R1EnaXRhbGljRigvJSltYXRoc2l6ZUdGNS1JI21vR0YlNjNRKSZBc3NpZ247RigvJSVmb3JtR1EmaW5maXhGKC8lJmZlbmNlR0Y4LyUqc2VwYXJhdG9yR0Y4LyUnbHNwYWNlR1EvdGhpY2ttYXRoc3BhY2VGKC8lJ3JzcGFjZUdGW3AvJSlzdHJldGNoeUdGOC8lKnN5bW1ldHJpY0dGOC8lKG1heHNpemVHUSlpbmZpbml0eUYoLyUobWluc2l6ZUdRIjFGKC8lKGxhcmdlb3BHRjgvJS5tb3ZhYmxlbGltaXRzR0Y4LyUnYWNjZW50R0Y4LyUwZm9udF9zdHlsZV9uYW1lR0ZYLyUlc2l6ZUdGNS8lK2ZvcmVncm91bmRHRkQvJStiYWNrZ3JvdW5kR0ZHLUkjbW5HRiU2OVEmMC4wNzZGKEYwRjNGNi9GOkY4RjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbi9Gam5RJ25vcm1hbEYoRlxvL0krbXNlbWFudGljc0dGJVEjOj1GKDcjLV9GKUksbXByaW50c2xhc2hHRig2JDcjPkkmVGVtcHNHRigkIiN3ISIkNyNGaHI= + + +
+
+<Text-field style="Heading 2" layout="Heading 2"><Font encoding="UTF-8">M\303\251thode it\303\251rative</Font></Text-field> +Mesure pour la m\303\251thode it\303\251rative : + + +t:=time(): +TFDIter(A): +Temps:= time()-t; + + +NiQtSSVtcm93RzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliR0YoNiYtSSNtaUdGJTY5USZUZW1wc0YoLyUnZmFtaWx5R1EwVGltZXN+TmV3flJvbWFuRigvJSVzaXplR1EjMTJGKC8lJWJvbGRHUSZmYWxzZUYoLyUnaXRhbGljR1EldHJ1ZUYoLyUqdW5kZXJsaW5lR0Y4LyUqc3Vic2NyaXB0R0Y4LyUsc3VwZXJzY3JpcHRHRjgvJStmb3JlZ3JvdW5kR1EqWzAsMCwyNTVdRigvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XUYoLyUnb3BhcXVlR0Y4LyUrZXhlY3V0YWJsZUdGOC8lKXJlYWRvbmx5R0Y4LyUpY29tcG9zZWRHRjgvJSpjb252ZXJ0ZWRHRjgvJStpbXNlbGVjdGVkR0Y4LyUscGxhY2Vob2xkZXJHRjgvJTBmb250X3N0eWxlX25hbWVHUSoyRH5PdXRwdXRGKC8lKm1hdGhjb2xvckdGRC8lL21hdGhiYWNrZ3JvdW5kR0ZHLyUrZm9udGZhbWlseUdGMi8lLG1hdGh2YXJpYW50R1EnaXRhbGljRigvJSltYXRoc2l6ZUdGNS1JI21vR0YlNjNRKSZBc3NpZ247RigvJSVmb3JtR1EmaW5maXhGKC8lJmZlbmNlR0Y4LyUqc2VwYXJhdG9yR0Y4LyUnbHNwYWNlR1EvdGhpY2ttYXRoc3BhY2VGKC8lJ3JzcGFjZUdGW3AvJSlzdHJldGNoeUdGOC8lKnN5bW1ldHJpY0dGOC8lKG1heHNpemVHUSlpbmZpbml0eUYoLyUobWluc2l6ZUdRIjFGKC8lKGxhcmdlb3BHRjgvJS5tb3ZhYmxlbGltaXRzR0Y4LyUnYWNjZW50R0Y4LyUwZm9udF9zdHlsZV9uYW1lR0ZYLyUlc2l6ZUdGNS8lK2ZvcmVncm91bmRHRkQvJStiYWNrZ3JvdW5kR0ZHLUkjbW5HRiU2OVEmMC4wNDBGKEYwRjNGNi9GOkY4RjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbi9Gam5RJ25vcm1hbEYoRlxvL0krbXNlbWFudGljc0dGJVEjOj1GKDcjLV9GKUksbXByaW50c2xhc2hHRig2JDcjPkkmVGVtcHNHRigkIiNTISIkNyNGaHI= + + +
+
+
+<Text-field style="Heading 1" layout="Heading 1"><Font encoding="UTF-8">Multiplication de polyn\303\264mes</Font></Text-field> +
+<Text-field style="Heading 2" layout="Heading 2">Algorithme</Text-field> +On va prendre en entr\303\251e deux listes contenant les coefficients des deux polyn\303\264mes dont on cherche \303\240 calculer le produit. +Il faut prendre des pr\303\251cautions, car la proc\303\251dure ne v\303\251rifie pas si les deux polyn\303\264mes sont de m\303\252me degr\303\251, qui doit \303\252tre une puissance de 2, si l'on souhaite utiliser la m\303\251thode r\303\251cursive ou it\303\251rative. + + +Multiplication:=proc(P,Q) + +local n,N,R,A,B,i,j,k: + +n:=nops(P): +N:=2*n: + +#On cr\303\251e la liste des coefficients \303\251tendus \303\240 2n \303\251l\303\251ments. +A:=[seq(P[k],k=1..n),seq(0,k=n+1..N)]; +B:=[seq(Q[k],k=1..n),seq(0,k=n+1..N)]; + +#On calcule la TFD de chacune de ces listes. +A:=TFDIter(A): +B:=TFDIter(B): + +#On effectue les produits +R:=[seq(A[k]*B[k],k=1..N)]: + +#On r\303\251cup\303\250re les coefficients. +TFDIIter(R); + +end proc: + + +
+
+<Text-field style="Heading 2" layout="Heading 2">Exemple</Text-field> +On va poser LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYmLUkjbWlHRiQ2OVEiUEYnLyUnZmFtaWx5R1EwVGltZXN+TmV3flJvbWFuRicvJSVzaXplR1EjMTJGJy8lJWJvbGRHUSZmYWxzZUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUqdW5kZXJsaW5lR0Y3LyUqc3Vic2NyaXB0R0Y3LyUsc3VwZXJzY3JpcHRHRjcvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUrYmFja2dyb3VuZEdRLlsyNTUsMjU1LDI1NV1GJy8lJ29wYXF1ZUdGNy8lK2V4ZWN1dGFibGVHRjcvJSlyZWFkb25seUdGNy8lKWNvbXBvc2VkR0Y3LyUqY29udmVydGVkR0Y3LyUraW1zZWxlY3RlZEdGNy8lLHBsYWNlaG9sZGVyR0Y3LyUwZm9udF9zdHlsZV9uYW1lR1EoMkR+TWF0aEYnLyUqbWF0aGNvbG9yR0ZDLyUvbWF0aGJhY2tncm91bmRHRkYvJStmb250ZmFtaWx5R0YxLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy8lKW1hdGhzaXplR0Y0LUkjbW9HRiQ2M1EjOj1GJy8lJWZvcm1HUSZpbmZpeEYnLyUmZmVuY2VHRjcvJSpzZXBhcmF0b3JHRjcvJSdsc3BhY2VHUS90aGlja21hdGhzcGFjZUYnLyUncnNwYWNlR0Zqby8lKXN0cmV0Y2h5R0Y3LyUqc3ltbWV0cmljR0Y3LyUobWF4c2l6ZUdRKWluZmluaXR5RicvJShtaW5zaXplR1EiMUYnLyUobGFyZ2VvcEdGNy8lLm1vdmFibGVsaW1pdHNHRjcvJSdhY2NlbnRHRjcvJTBmb250X3N0eWxlX25hbWVHRlcvJSVzaXplR0Y0LyUrZm9yZWdyb3VuZEdGQy8lK2JhY2tncm91bmRHRkYtRiM2Jy1GLDY5USFGJ0YvRjJGNUY4RjtGPUY/RkFGREZHRklGS0ZNRk9GUUZTRlVGWEZaRmZuRmhuRltvLUkrbXVuZGVyb3ZlckdGJDYnLUZebzYzUSYmU3VtO0YnL0Zib1EncHJlZml4RidGZG9GZm8vRmlvUSQwZW1GJy9GXHBRLnRoaW5tYXRoc3BhY2VGJy9GXnBGOkZfcEZhcEZkcC9GaHBGOi9GanBGOkZbcUZdcUZfcUZhcUZjcS1GIzYnRmdxLUYsNjlRImlGJ0YvL0YzUSMxMEYnRjVGOEY7Rj1GPy9GQlEsWzIwMCwwLDIwMF1GJ0ZERkdGSUZLRk1GT0ZRL0ZURjpGVS9GWUZhc0ZaRmZuRmhuL0Zcb0Zfcy1GXm82M1EiPUYnRmFvRmRvRmZvRmhvRltwRl1wRl9wRmFwRmRwRmdwRmlwRltxRl1xRl9xRmFxRmNxLUkjbW5HRiQ2OVEiMEYnRi9GMkY1L0Y5RjdGO0Y9Rj9GQUZERkdGSUZLRk1GT0ZRRlNGVUZYRlpGZm4vRmluUSdub3JtYWxGJ0Zbb0ZncS1GaXM2OVEiN0YnRi9GMkY1Rlx0RjtGPUY/RkFGREZHRklGS0ZNRk9GUUZTRlVGWEZaRmZuRl10RltvRltxLyUsYWNjZW50dW5kZXJHRjdGZ3EtSSVtc3VwR0YkNiUtRiw2OVEjaVhGJ0YvRjJGNUY4RjtGPUY/RkFGREZHRklGS0ZNRk9GUUZTRlVGWEZaRmZuRmhuRltvLUYsNjlGXXNGL0YyRjVGOEY7Rj1GP0ZBRkRGR0ZJRktGTUZPRlFGU0ZVRlhGWkZmbkZobkZbby8lMXN1cGVyc2NyaXB0c2hpZnRHUSIwRidGZ3FGZ3E= et LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYmLUkjbWlHRiQ2OVEiUUYnLyUnZmFtaWx5R1EwVGltZXN+TmV3flJvbWFuRicvJSVzaXplR1EjMTJGJy8lJWJvbGRHUSZmYWxzZUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUqdW5kZXJsaW5lR0Y3LyUqc3Vic2NyaXB0R0Y3LyUsc3VwZXJzY3JpcHRHRjcvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUrYmFja2dyb3VuZEdRLlsyNTUsMjU1LDI1NV1GJy8lJ29wYXF1ZUdGNy8lK2V4ZWN1dGFibGVHRjcvJSlyZWFkb25seUdGNy8lKWNvbXBvc2VkR0Y3LyUqY29udmVydGVkR0Y3LyUraW1zZWxlY3RlZEdGNy8lLHBsYWNlaG9sZGVyR0Y3LyUwZm9udF9zdHlsZV9uYW1lR1EoMkR+TWF0aEYnLyUqbWF0aGNvbG9yR0ZDLyUvbWF0aGJhY2tncm91bmRHRkYvJStmb250ZmFtaWx5R0YxLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy8lKW1hdGhzaXplR0Y0LUkjbW9HRiQ2M1EjOj1GJy8lJWZvcm1HUSZpbmZpeEYnLyUmZmVuY2VHRjcvJSpzZXBhcmF0b3JHRjcvJSdsc3BhY2VHUS90aGlja21hdGhzcGFjZUYnLyUncnNwYWNlR0Zqby8lKXN0cmV0Y2h5R0Y3LyUqc3ltbWV0cmljR0Y3LyUobWF4c2l6ZUdRKWluZmluaXR5RicvJShtaW5zaXplR1EiMUYnLyUobGFyZ2VvcEdGNy8lLm1vdmFibGVsaW1pdHNHRjcvJSdhY2NlbnRHRjcvJTBmb250X3N0eWxlX25hbWVHRlcvJSVzaXplR0Y0LyUrZm9yZWdyb3VuZEdGQy8lK2JhY2tncm91bmRHRkYtRiM2KS1GLDY5USFGJ0YvRjJGNUY4RjtGPUY/RkFGREZHRklGS0ZNRk9GUUZTRlVGWEZaRmZuRmhuRltvLUkrbXVuZGVyb3ZlckdGJDYnLUZebzYzUSYmU3VtO0YnL0Zib1EncHJlZml4RidGZG9GZm8vRmlvUSQwZW1GJy9GXHBRLnRoaW5tYXRoc3BhY2VGJy9GXnBGOkZfcEZhcEZkcC9GaHBGOi9GanBGOkZbcUZdcUZfcUZhcUZjcS1GIzYmRmdxLUYsNjlRImlGJ0YvL0YzUSMxMEYnRjVGOEY7Rj1GPy9GQlEsWzIwMCwwLDIwMF1GJ0ZERkdGSUZLRk1GT0ZRL0ZURjpGVS9GWUZhc0ZaRmZuRmhuL0Zcb0Zfcy1GXm82M1EiPUYnRmFvRmRvRmZvRmhvRltwRl1wRl9wRmFwRmRwRmdwRmlwRltxRl1xRl9xRmFxRmNxLUkjbW5HRiQ2OVEiMEYnRi9GMkY1L0Y5RjdGO0Y9Rj9GQUZERkdGSUZLRk1GT0ZRRlNGVUZYRlpGZm4vRmluUSdub3JtYWxGJ0Zbby1GaXM2OVEiN0YnRi9GMkY1Rlx0RjtGPUY/RkFGREZHRklGS0ZNRk9GUUZTRlVGWEZaRmZuRl10RltvRltxLyUsYWNjZW50dW5kZXJHRjdGZ3EtSSVtc3VwR0YkNiUtRiw2OUZdc0YvRjJGNUY4RjtGPUY/RkFGREZHRklGS0ZNRk9GUUZTRlVGWEZaRmZuRmhuRltvRmd0LyUxc3VwZXJzY3JpcHRzaGlmdEdRIjBGJ0ZncS1GZXQ2JS1GLDY5USJYRidGL0YyRjVGOEY7Rj1GP0ZBRkRGR0ZJRktGTUZPRlFGU0ZVRlhGWkZmbkZobkZbb0ZndEZpdEZncUZncQ== doncLUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbW9HRiQ2M1ExJkludmlzaWJsZVRpbWVzO0YnLyUlZm9ybUdRJmluZml4RicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRjQvJSdsc3BhY2VHUS90aGlja21hdGhzcGFjZUYnLyUncnNwYWNlR0Y5LyUpc3RyZXRjaHlHRjQvJSpzeW1tZXRyaWNHRjQvJShtYXhzaXplR1EpaW5maW5pdHlGJy8lKG1pbnNpemVHUSIxRicvJShsYXJnZW9wR0Y0LyUubW92YWJsZWxpbWl0c0dGNC8lJ2FjY2VudEdGNC8lMGZvbnRfc3R5bGVfbmFtZUdRKDJEfk1hdGhGJy8lJXNpemVHUSMxMkYnLyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdRictSSNtaUdGJDY5USJuRicvJSdmYW1pbHlHUTBUaW1lc35OZXd+Um9tYW5GJy8lJXNpemVHRlEvJSVib2xkR0Y0LyUnaXRhbGljR1EldHJ1ZUYnLyUqdW5kZXJsaW5lR0Y0LyUqc3Vic2NyaXB0R0Y0LyUsc3VwZXJzY3JpcHRHRjQvJStmb3JlZ3JvdW5kR0ZULyUrYmFja2dyb3VuZEdGVy8lJ29wYXF1ZUdGNC8lK2V4ZWN1dGFibGVHRjQvJSlyZWFkb25seUdGNC8lKWNvbXBvc2VkR0Y0LyUqY29udmVydGVkR0Y0LyUraW1zZWxlY3RlZEdGNC8lLHBsYWNlaG9sZGVyR0Y0LyUwZm9udF9zdHlsZV9uYW1lR0ZOLyUqbWF0aGNvbG9yR0ZULyUvbWF0aGJhY2tncm91bmRHRlcvJStmb250ZmFtaWx5R0Zobi8lLG1hdGh2YXJpYW50R1EnaXRhbGljRicvJSltYXRoc2l6ZUdGUS1GLDYzUSI9RidGL0YyRjVGN0Y6RjxGPkZARkNGRkZIRkpGTEZPRlJGVS1JI21uR0YkNjlRIjhGJ0ZmbkZpbkZbby9GXm9GNEZgb0Zib0Zkb0Zmb0Zob0Zqb0ZccEZecEZgcEZicEZkcEZmcEZocEZqcEZccUZecS9GYXFRJ25vcm1hbEYnRmNxRmVxLUklbXN1cEdGJDYlLUZpcTY5USIyRidGZm5GaW5GW29GXHJGYG9GYm9GZG9GZm9GaG9Gam9GXHBGXnBGYHBGYnBGZHBGZnBGaHBGanBGXHFGXnFGXXJGY3EtRmlxNjlRIzMuRidGZm5GaW5GW29GXHJGYG9GYm9GZG9GZm9GaG9Gam9GXHBGXnBGYHBGYnBGZHBGZnBGaHBGanBGXHFGXnFGXXJGY3EvJTFzdXBlcnNjcmlwdHNoaWZ0R1EiMEYnLUZZNjlRIUYnRmZuRmluRltvRl1vRmBvRmJvRmRvRmZvRmhvRmpvRlxwRl5wRmBwRmJwRmRwRmZwRmhwRmpwRlxxRl5xRmBxRmNx +
+<Text-field style="Heading 3" layout="Heading 3">Algo</Text-field> +On va demander la liste des coefficients du polyn\303\264me R=P*Q. Pour une lecture plus facile, nous en prendrons les valeurs arrondies. + + +P:=[seq(i,i=0..7)]: + + + + +Q:=[seq(i^i,i=0..7)]: + + + + +R:=evalf(Multiplication(P,Q)): + + + + +[seq(R[j],j=1..2*nops(P))]; + + +NiQtSShtZmVuY2VkRzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliR0YoNjQtSSVtcm93R0YlNiYtSSNtbkdGJTY5USgwLjAwMDkxRigvJSdmYW1pbHlHUTBUaW1lc35OZXd+Um9tYW5GKC8lJXNpemVHUSMxMkYoLyUlYm9sZEdRJmZhbHNlRigvJSdpdGFsaWNHRjsvJSp1bmRlcmxpbmVHRjsvJSpzdWJzY3JpcHRHRjsvJSxzdXBlcnNjcmlwdEdGOy8lK2ZvcmVncm91bmRHUSpbMCwwLDI1NV1GKC8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdRigvJSdvcGFxdWVHRjsvJStleGVjdXRhYmxlR0Y7LyUpcmVhZG9ubHlHRjsvJSljb21wb3NlZEdGOy8lKmNvbnZlcnRlZEdGOy8lK2ltc2VsZWN0ZWRHRjsvJSxwbGFjZWhvbGRlckdGOy8lMGZvbnRfc3R5bGVfbmFtZUdRKjJEfk91dHB1dEYoLyUqbWF0aGNvbG9yR0ZGLyUvbWF0aGJhY2tncm91bmRHRkkvJStmb250ZmFtaWx5R0Y1LyUsbWF0aHZhcmlhbnRHUSdub3JtYWxGKC8lKW1hdGhzaXplR0Y4LUkjbW9HRiU2M1EnJnBsdXM7RigvJSVmb3JtR1EmaW5maXhGKC8lJmZlbmNlR0Y7LyUqc2VwYXJhdG9yR0Y7LyUnbHNwYWNlR1EwbWVkaXVtbWF0aHNwYWNlRigvJSdyc3BhY2VHRl1wLyUpc3RyZXRjaHlHRjsvJSpzeW1tZXRyaWNHRjsvJShtYXhzaXplR1EpaW5maW5pdHlGKC8lKG1pbnNpemVHUSIxRigvJShsYXJnZW9wR0Y7LyUubW92YWJsZWxpbWl0c0dGOy8lJ2FjY2VudEdGOy8lMGZvbnRfc3R5bGVfbmFtZUdGWi8lJXNpemVHRjgvJStmb3JlZ3JvdW5kR0ZGLyUrYmFja2dyb3VuZEdGSS1GLTYmLUYwNjlRJjAuMDAyRihGM0Y2RjlGPEY+RkBGQkZERkdGSkZMRk5GUEZSRlRGVkZYRmVuRmduRmluRltvRl5vLUZhbzYzUTEmSW52aXNpYmxlVGltZXM7RihGZG9GZ29GaW8vRlxwUSQwZW1GKC9GX3BGYXJGYHBGYnBGZHBGZ3BGanBGXHFGXnFGYHFGYnFGZHFGZnEtRjA2OVEtJkltYWdpbmFyeUk7RihGM0Y2RjlGPEY+RkBGQkZERkdGSkZMRk5GUEZSRlRGVkZYRmVuRmduRmluRltvRl5vL0krbXNlbWFudGljc0dGJVEiKkYoL0ZnclEiK0YoLUYtNiYtRjA2OVEnMS4wMDI0RihGM0Y2RjlGPEY+RkBGQkZERkdGSkZMRk5GUEZSRlRGVkZYRmVuRmduRmluRltvRl5vRmBvLUYtNiYtRjA2OVEnMC4wMDIwRihGM0Y2RjlGPEY+RkBGQkZERkdGSkZMRk5GUEZSRlRGVkZYRmVuRmduRmluRltvRl5vRl1yRmNyRmZyRmlyLUYtNiYtRjA2OVEnMy4wMDQ1RihGM0Y2RjlGPEY+RkBGQkZERkdGSkZMRk5GUEZSRlRGVkZYRmVuRmduRmluRltvRl5vRmBvLUYtNiYtRjA2OVEmMC4wMDVGKEYzRjZGOUY8Rj5GQEZCRkRGR0ZKRkxGTkZQRlJGVEZWRlhGZW5GZ25GaW5GW29GXm9GXXJGY3JGZnJGaXItRi02Ji1GMDY5USc5LjAwMDhGKEYzRjZGOUY8Rj5GQEZCRkRGR0ZKRkxGTkZQRlJGVEZWRlhGZW5GZ25GaW5GW29GXm9GYG8tRi02Ji1GMDY5USgwLjAwMjIxRihGM0Y2RjlGPEY+RkBGQkZERkdGSkZMRk5GUEZSRlRGVkZYRmVuRmduRmluRltvRl5vRl1yRmNyRmZyRmlyLUYtNiYtRjA2OVEnNDEuOTk5RihGM0Y2RjlGPEY+RkBGQkZERkdGSkZMRk5GUEZSRlRGVkZYRmVuRmduRmluRltvRl5vRmBvLUYtNiYtRjA2OVEvMC4wMDMwMzEyNTAwMDBGKEYzRjZGOUY8Rj5GQEZCRkRGR0ZKRkxGTkZQRlJGVEZWRlhGZW5GZ25GaW5GW29GXm9GXXJGY3JGZnJGaXItRi02Ji1GMDY5USgzMzAuOTk5RihGM0Y2RjlGPEY+RkBGQkZERkdGSkZMRk5GUEZSRlRGVkZYRmVuRmduRmluRltvRl5vRmBvLUYtNiYtRjA2OVEvMC4wMDI5NzUwMDAwMDBGKEYzRjZGOUY8Rj5GQEZCRkRGR0ZKRkxGTkZQRlJGVEZWRlhGZW5GZ25GaW5GW29GXm9GXXJGY3JGZnJGaXItRi02Ji1GMDY5USkzNzQ1LjAwMEYoRjNGNkY5RjxGPkZARkJGREZHRkpGTEZORlBGUkZURlZGWEZlbkZnbkZpbkZbb0Zeb0Zgby1GLTYmLUYwNjlRLzAuMDAzNzUwMDAwMDAwRihGM0Y2RjlGPEY+RkBGQkZERkdGSkZMRk5GUEZSRlRGVkZYRmVuRmduRmluRltvRl5vRl1yRmNyRmZyRmlyLUYtNiYtRjA2OVEsNTM4MTUuMDAwMzVGKEYzRjZGOUY8Rj5GQEZCRkRGR0ZKRkxGTkZQRlJGVEZWRlhGZW5GZ25GaW5GW29GXm8tRmFvNjNRKCZtaW51cztGKEZkb0Znb0Zpb0ZbcEZecEZgcEZicEZkcEZncEZqcEZccUZecUZgcUZicUZkcUZmcS1GLTYmLUYwNjlRLzAuMDAxMzQ4NjA1Mzk3RihGM0Y2RjlGPEY+RkBGQkZERkdGSkZMRk5GUEZSRlRGVkZYRmVuRmduRmluRltvRl5vRl1yRmNyRmZyRmlyLUYtNiYtRjA2OVEsOTI3NDIwLjAwMTNGKEYzRjZGOUY8Rj5GQEZCRkRGR0ZKRkxGTkZQRlJGVEZWRlhGZW5GZ25GaW5GW29GXm9GXHdGaHFGaXItRi02Ji1GLTYmLUYwNjlRLDEuODAxMDI0MDAwRihGM0Y2RjlGPEY+RkBGQkZERkdGSkZMRk5GUEZSRlRGVkZYRmVuRmduRmluRltvRl5vRl1yLUklbXN1cEdGJTYmLUYwNjlRIzEwRihGM0Y2RjlGPEY+RkBGQkZERkdGSkZMRk5GUEZSRlRGVkZYRmVuRmduRmluRltvRl5vLUYwNjlRIjZGKEYzRjZGOUY8Rj5GQEZCRkRGR0ZKRkxGTkZQRlJGVEZWRlhGZW5GZ25GaW5GW29GXm8vJTFzdXBlcnNjcmlwdHNoaWZ0R1EiMEYoL0ZnclEiXkYoRmZyRlx3LUYtNiYtRjA2OVEnMC4wMDMwRihGM0Y2RjlGPEY+RkBGQkZERkdGSkZMRk5GUEZSRlRGVkZYRmVuRmduRmluRltvRl5vRl1yRmNyRmZyRmlyLUYtNiYtRi02Ji1GMDY5USwyLjY3NDYwMzAwMEYoRjNGNkY5RjxGPkZARkJGREZHRkpGTEZORlBGUkZURlZGWEZlbkZnbkZpbkZbb0Zeb0ZdckZgeEZmckZcd0Zqc0Zpci1GLTYmLUYtNiYtRjA2OVEsMy41NDc5OTM5OTdGKEYzRjZGOUY8Rj5GQEZCRkRGR0ZKRkxGTkZQRlJGVEZWRlhGZW5GZ25GaW5GW29GXm9GXXJGYHhGZnJGXHctRi02Ji1GMDY5USgwLjAwMTY1RihGM0Y2RjlGPEY+RkBGQkZERkdGSkZMRk5GUEZSRlRGVkZYRmVuRmduRmluRltvRl5vRl1yRmNyRmZyRmlyLUYtNiYtRi02Ji1GMDY5USw0LjQxOTUyNTk5N0YoRjNGNkY5RjxGPkZARkJGREZHRkpGTEZORlBGUkZURlZGWEZlbkZnbkZpbkZbb0Zeb0ZdckZgeEZmckZcd0ZedUZpci1GLTYmLUYtNiYtRjA2OVEsNS4yNjc4NDk5OTlGKEYzRjZGOUY8Rj5GQEZCRkRGR0ZKRkxGTkZQRlJGVEZWRlhGZW5GZ25GaW5GW29GXm9GXXJGYHhGZnJGXHctRi02Ji1GMDY5US8wLjAwMTc3NTAwMDAwMEYoRjNGNkY5RjxGPkZARkJGREZHRkpGTEZORlBGUkZURlZGWEZlbkZnbkZpbkZbb0Zeb0ZdckZjckZmckZpci1GLTYmLUYtNiYtRjA2OVEsNS43NjQ4MDA5OTZGKEYzRjZGOUY8Rj5GQEZCRkRGR0ZKRkxGTkZQRlJGVEZWRlhGZW5GZ25GaW5GW29GXm9GXXJGYHhGZnJGXHdGYnZGaXItRi02Ji1GMDY5USgwLjAwMjA1RihGM0Y2RjlGPEY+RkBGQkZERkdGSkZMRk5GUEZSRlRGVkZYRmVuRmduRmluRltvRl5vRlx3LUYtNiYtRjA2OVEwMC4wMDAwOTg2MDUzOTcyRihGM0Y2RjlGPEY+RkBGQkZERkdGSkZMRk5GUEZSRlRGVkZYRmVuRmduRmluRltvRl5vRl1yRmNyRmZyRmlyLyUlb3BlbkdRJyZsc3FiO0YoLyUmY2xvc2VHUScmcnNxYjtGKDcjNzIsJiQiIyIqISImIiIiKiYkIiIjISIkRmZdbF4jRmZdbEZmXWxGZl1sLCYkIiZDKyIhIiVGZl1sKiYkIiM/Rl9ebEZmXWxGW15sRmZdbEZmXWwsJiQiJlgrJEZfXmxGZl1sKiYkIiImRmpdbEZmXWxGW15sRmZdbEZmXWwsJiQiJjMrKkZfXmxGZl1sKiYkIiRAI0ZlXWxGZl1sRltebEZmXWxGZl1sLCYkIiYqKj4lRmpdbEZmXWwqJiQiKysrREpJISM3RmZdbEZbXmxGZl1sRmZdbCwmJCInKio0TEZqXWxGZl1sKiYkIisrKyt2SEZlX2xGZl1sRltebEZmXWxGZl1sLCYkIigrXXUkRmpdbEZmXWwqJiQiKysrK11QRmVfbEZmXWxGW15sRmZdbEZmXWwsJiQiK04rXSJRJkZlXWxGZl1sKiYkIisoUjAnWzhGZV9sRmZdbEZbXmxGZl1sISIiLCYkIis4Kz91IypGX15sRmZdbEZnXWxGaGBsLCYkIisrUy0sPUZqXWxGZl1sKiYkIiNJRl9ebEZmXWxGW15sRmZdbEZoYGwsJiQiKytJZ3VFRmpdbEZmXWxGZl5sRmhgbCwmJCIrKCpSKnphJEZqXWxGZl1sKiYkIiRsIkZlXWxGZl1sRltebEZmXWxGaGBsLCYkIisoKmZfPldGal1sRmZdbEZiX2xGaGBsLCYkIisqKipceUUmRmpdbEZmXWwqJiQiKysrK3Y8RmVfbEZmXWxGW15sRmZdbEZoYGwsJiQiKycqNCFbdyZGal1sRmZdbEZfYGxGaGBsLCYkIiQwI0ZlXWxGZl1sKiYkIipzUjAnKSohIzhGZl1sRltebEZmXWxGaGBs + + + + +R:=[seq(round(R[j]),j=1..2*nops(P))]; + + +NiQtSSVtcm93RzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliR0YoNiYtSSNtaUdGJTY5USJSRigvJSdmYW1pbHlHUTBUaW1lc35OZXd+Um9tYW5GKC8lJXNpemVHUSMxMkYoLyUlYm9sZEdRJmZhbHNlRigvJSdpdGFsaWNHUSV0cnVlRigvJSp1bmRlcmxpbmVHRjgvJSpzdWJzY3JpcHRHRjgvJSxzdXBlcnNjcmlwdEdGOC8lK2ZvcmVncm91bmRHUSpbMCwwLDI1NV1GKC8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdRigvJSdvcGFxdWVHRjgvJStleGVjdXRhYmxlR0Y4LyUpcmVhZG9ubHlHRjgvJSljb21wb3NlZEdGOC8lKmNvbnZlcnRlZEdGOC8lK2ltc2VsZWN0ZWRHRjgvJSxwbGFjZWhvbGRlckdGOC8lMGZvbnRfc3R5bGVfbmFtZUdRKjJEfk91dHB1dEYoLyUqbWF0aGNvbG9yR0ZELyUvbWF0aGJhY2tncm91bmRHRkcvJStmb250ZmFtaWx5R0YyLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGKC8lKW1hdGhzaXplR0Y1LUkjbW9HRiU2M1EpJkFzc2lnbjtGKC8lJWZvcm1HUSZpbmZpeEYoLyUmZmVuY2VHRjgvJSpzZXBhcmF0b3JHRjgvJSdsc3BhY2VHUS90aGlja21hdGhzcGFjZUYoLyUncnNwYWNlR0ZbcC8lKXN0cmV0Y2h5R0Y4LyUqc3ltbWV0cmljR0Y4LyUobWF4c2l6ZUdRKWluZmluaXR5RigvJShtaW5zaXplR1EiMUYoLyUobGFyZ2VvcEdGOC8lLm1vdmFibGVsaW1pdHNHRjgvJSdhY2NlbnRHRjgvJTBmb250X3N0eWxlX25hbWVHRlgvJSVzaXplR0Y1LyUrZm9yZWdyb3VuZEdGRC8lK2JhY2tncm91bmRHRkctSShtZmVuY2VkR0YlNjQtSSNtbkdGJTY5USIwRihGMEYzRjYvRjpGOEY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ24vRmpuUSdub3JtYWxGKEZcby1GanE2OUZncEYwRjNGNkZdckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GXnJGXG8tRmpxNjlRIjNGKEYwRjNGNkZdckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GXnJGXG8tRmpxNjlRIjlGKEYwRjNGNkZdckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GXnJGXG8tRmpxNjlRIzQyRihGMEYzRjZGXXJGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRl5yRlxvLUZqcTY5USQzMzFGKEYwRjNGNkZdckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GXnJGXG8tRmpxNjlRJTM3NDVGKEYwRjNGNkZdckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GXnJGXG8tRmpxNjlRJjUzODE1RihGMEYzRjZGXXJGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRl5yRlxvLUZqcTY5USc5Mjc0MjBGKEYwRjNGNkZdckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GXnJGXG8tRmpxNjlRKDE4MDEwMjRGKEYwRjNGNkZdckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GXnJGXG8tRmpxNjlRKDI2NzQ2MDNGKEYwRjNGNkZdckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GXnJGXG8tRmpxNjlRKDM1NDc5OTRGKEYwRjNGNkZdckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GXnJGXG8tRmpxNjlRKDQ0MTk1MjZGKEYwRjNGNkZdckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GXnJGXG8tRmpxNjlRKDUyNjc4NTBGKEYwRjNGNkZdckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GXnJGXG8tRmpxNjlRKDU3NjQ4MDFGKEYwRjNGNkZdckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GXnJGXG9GaXEvJSVvcGVuR1EnJmxzcWI7RigvJSZjbG9zZUdRJyZyc3FiO0YoL0krbXNlbWFudGljc0dGJVEjOj1GKDcjLV9GKUksbXByaW50c2xhc2hHRig2JDcjPkkiUkdGKDcyIiIhIiIiIiIkIiIqIiNVIiRKJCIlWFAiJjpRJiInP3UjKiIoQzUhPSIoLlluIyIoJSp6YSQiKEUmPlciKF15RSYiKCxbdyZGW3Y3I0ZqdQ== + + +
+
+<Text-field style="Heading 3" layout="Heading 3">Maple</Text-field> +On va evaluer le polyn\303\264me P*Q : + + +P:=sum(i*X^i,i=0..7): + + + + +Q:=sum(i^i*X^i,i=0..7): + + + + +sort(expand(P*Q),X,ascending); + + +NiQtSSVtcm93RzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliR0YoNj4tSSNtaUdGJTY5USJYRigvJSdmYW1pbHlHUTBUaW1lc35OZXd+Um9tYW5GKC8lJXNpemVHUSMxMkYoLyUlYm9sZEdRJmZhbHNlRigvJSdpdGFsaWNHUSV0cnVlRigvJSp1bmRlcmxpbmVHRjgvJSpzdWJzY3JpcHRHRjgvJSxzdXBlcnNjcmlwdEdGOC8lK2ZvcmVncm91bmRHUSpbMCwwLDI1NV1GKC8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdRigvJSdvcGFxdWVHRjgvJStleGVjdXRhYmxlR0Y4LyUpcmVhZG9ubHlHRjgvJSljb21wb3NlZEdGOC8lKmNvbnZlcnRlZEdGOC8lK2ltc2VsZWN0ZWRHRjgvJSxwbGFjZWhvbGRlckdGOC8lMGZvbnRfc3R5bGVfbmFtZUdRKjJEfk91dHB1dEYoLyUqbWF0aGNvbG9yR0ZELyUvbWF0aGJhY2tncm91bmRHRkcvJStmb250ZmFtaWx5R0YyLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGKC8lKW1hdGhzaXplR0Y1LUkjbW9HRiU2M1EnJnBsdXM7RigvJSVmb3JtR1EmaW5maXhGKC8lJmZlbmNlR0Y4LyUqc2VwYXJhdG9yR0Y4LyUnbHNwYWNlR1EwbWVkaXVtbWF0aHNwYWNlRigvJSdyc3BhY2VHRltwLyUpc3RyZXRjaHlHRjgvJSpzeW1tZXRyaWNHRjgvJShtYXhzaXplR1EpaW5maW5pdHlGKC8lKG1pbnNpemVHUSIxRigvJShsYXJnZW9wR0Y4LyUubW92YWJsZWxpbWl0c0dGOC8lJ2FjY2VudEdGOC8lMGZvbnRfc3R5bGVfbmFtZUdGWC8lJXNpemVHRjUvJStmb3JlZ3JvdW5kR0ZELyUrYmFja2dyb3VuZEdGRy1GJDYmLUkjbW5HRiU2OVEiM0YoRjBGM0Y2L0Y6RjhGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduL0ZqblEnbm9ybWFsRihGXG8tRl9vNjNRMSZJbnZpc2libGVUaW1lcztGKEZib0Zlb0Znby9Gam9RJDBlbUYoL0ZdcEZjckZecEZgcEZicEZlcEZocEZqcEZccUZecUZgcUZicUZkcS1JJW1zdXBHRiU2JUYsLUZpcTY5USIyRihGMEYzRjZGXHJGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRl1yRlxvLyUxc3VwZXJzY3JpcHRzaGlmdEdRIjBGKC9JK21zZW1hbnRpY3NHRiVRIipGKEZeby1GJDYmLUZpcTY5USI5RihGMEYzRjZGXHJGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRl1yRlxvRl9yLUZmcjYlRixGaHFGW3NGXnNGXm8tRiQ2Ji1GaXE2OVEjNDJGKEYwRjNGNkZcckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GXXJGXG9GX3ItRmZyNiVGLC1GaXE2OVEiNEYoRjBGM0Y2RlxyRjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZdckZcb0Zbc0Zec0Zeby1GJDYmLUZpcTY5USQzMzFGKEYwRjNGNkZcckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GXXJGXG9GX3ItRmZyNiVGLC1GaXE2OVEiNUYoRjBGM0Y2RlxyRjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZdckZcb0Zbc0Zec0Zeby1GJDYmLUZpcTY5USUzNzQ1RihGMEYzRjZGXHJGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRl1yRlxvRl9yLUZmcjYlRiwtRmlxNjlRIjZGKEYwRjNGNkZcckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GXXJGXG9GW3NGXnNGXm8tRiQ2Ji1GaXE2OVEmNTM4MTVGKEYwRjNGNkZcckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GXXJGXG9GX3ItRmZyNiVGLC1GaXE2OVEiN0YoRjBGM0Y2RlxyRjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZdckZcb0Zbc0Zec0Zeby1GJDYmLUZpcTY5USc5Mjc0MjBGKEYwRjNGNkZcckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GXXJGXG9GX3ItRmZyNiVGLC1GaXE2OVEiOEYoRjBGM0Y2RlxyRjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZdckZcb0Zbc0Zec0Zeby1GJDYmLUZpcTY5USgxODAxMDI0RihGMEYzRjZGXHJGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRl1yRlxvRl9yLUZmcjYlRixGY3NGW3NGXnNGXm8tRiQ2Ji1GaXE2OVEoMjY3NDYwM0YoRjBGM0Y2RlxyRjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZdckZcb0Zfci1GZnI2JUYsLUZpcTY5USMxMEYoRjBGM0Y2RlxyRjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZdckZcb0Zbc0Zec0Zeby1GJDYmLUZpcTY5USgzNTQ3OTk0RihGMEYzRjZGXHJGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRl1yRlxvRl9yLUZmcjYlRiwtRmlxNjlRIzExRihGMEYzRjZGXHJGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRl1yRlxvRltzRl5zRl5vLUYkNiYtRmlxNjlRKDQ0MTk1MjZGKEYwRjNGNkZcckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GXXJGXG9GX3ItRmZyNiVGLC1GaXE2OVEjMTJGKEYwRjNGNkZcckY8Rj5GQEZCRkVGSEZKRkxGTkZQRlJGVEZWRllGZW5GZ25GXXJGXG9GW3NGXnNGXm8tRiQ2Ji1GaXE2OVEoNTI2Nzg1MEYoRjBGM0Y2RlxyRjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZdckZcb0Zfci1GZnI2JUYsLUZpcTY5USMxM0YoRjBGM0Y2RlxyRjxGPkZARkJGRUZIRkpGTEZORlBGUkZURlZGWUZlbkZnbkZdckZcb0Zbc0Zec0Zeby1GJDYmLUZpcTY5USg1NzY0ODAxRihGMEYzRjZGXHJGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRl1yRlxvRl9yLUZmcjYlRiwtRmlxNjlRIzE0RihGMEYzRjZGXHJGPEY+RkBGQkZFRkhGSkZMRk5GUEZSRlRGVkZZRmVuRmduRl1yRlxvRltzRl5zL0Zfc1EiK0YoNyMsPkkiWEdGKCIiIiomIiIkRmh6KUZneiIiI0ZoekZoeiomIiIqRmh6KUZnekZqekZoekZoeiomIiNVRmh6KUZneiIiJUZoekZoeiomIiRKJEZoeilGZ3oiIiZGaHpGaHoqJiIlWFBGaHopRmd6IiInRmh6Rmh6KiYiJjpRJkZoeilGZ3oiIihGaHpGaHoqJiInP3UjKkZoeilGZ3oiIilGaHpGaHoqJiIoQzUhPUZoeilGZ3pGXltsRmh6Rmh6KiYiKC5ZbiNGaHopRmd6IiM1Rmh6Rmh6KiYiKCUqemEkRmh6KUZneiIjNkZoekZoeiomIihFJj5XRmh6KUZneiIjN0ZoekZoeiomIihdeUUmRmh6KUZneiIjOEZoekZoeiomIigsW3cmRmh6KUZneiIjOUZoekZoeg== + + + + + + + +
+
+
+
\ No newline at end of file diff --git a/content/static/TIPE_2007/Octave/Multiplication.m b/content/static/TIPE_2007/Octave/Multiplication.m new file mode 100644 index 0000000..eb53abc --- /dev/null +++ b/content/static/TIPE_2007/Octave/Multiplication.m @@ -0,0 +1,22 @@ +function[R]=Multiplication(P,Q) + +n=length(P); +N=2*n; +A=zeros(1,N); +B=zeros(1,N); +R=zeros(1,N); + +for i=1:n + A(i)=P(i); + B(i)=Q(i); +end + +%On calcule les transformées de chaque élément. +A=TFDB(A); +B=TFDB(B); +%On effectue les produits +for i=1:N + R(i)=A(i)*B(i); +end +R=TFDIB(R); +endfunction diff --git a/content/static/TIPE_2007/Octave/TFD - Octave.tar.bz2 b/content/static/TIPE_2007/Octave/TFD - Octave.tar.bz2 new file mode 100644 index 0000000..6ac824f Binary files /dev/null and b/content/static/TIPE_2007/Octave/TFD - Octave.tar.bz2 differ diff --git a/content/static/TIPE_2007/Octave/TFD - Octave.zip b/content/static/TIPE_2007/Octave/TFD - Octave.zip new file mode 100644 index 0000000..e540144 Binary files /dev/null and b/content/static/TIPE_2007/Octave/TFD - Octave.zip differ diff --git a/content/static/TIPE_2007/Octave/TFDI - Octave.tar.bz2 b/content/static/TIPE_2007/Octave/TFDI - Octave.tar.bz2 new file mode 100644 index 0000000..696a8a1 Binary files /dev/null and b/content/static/TIPE_2007/Octave/TFDI - Octave.tar.bz2 differ diff --git a/content/static/TIPE_2007/Octave/TFDI - Octave.zip b/content/static/TIPE_2007/Octave/TFDI - Octave.zip new file mode 100644 index 0000000..537115d Binary files /dev/null and b/content/static/TIPE_2007/Octave/TFDI - Octave.zip differ -- cgit v1.2.3-70-g09d2